Loading...
Search for: permittivity
0.005 seconds
Total 49 records

    Experimental study of geotextile's drainage and filteration propertis under different hydraulic gradients and confining pressures

    , Article International Journal of Civil Engineering ; Volume 9, Issue 2 , 2011 , Pages 97-102 ; 17350522 (ISSN) Pak, A ; Zahmatkesh, Z ; Sharif University of Technology
    2011
    Abstract
    Geotextiles are one of the most widely used synthetic materials in filtration and drainage applications. Since in real applications, geotextiles are subjected to various hydraulic gradients and confining stresses, hydraulic behavior of geotextiles under different circumstances is of great practical importance. In this study filtration and drainage properties of several nonwoven needle-punched geotextiles with different properties and unit mass per area of 200g/m2, 400g/m2, 500g/m2 and 800g/m2, under various confining stresses and hydraulic gradients, were studied using standard permittivity and transmissivity equipments. Prepared samples were subjected to hydraulic heads in the range of 10cm... 

    Simultaneous measurements of the resistance and capacitance using a cylindrical sensor system

    , Article Modern Physics Letters B ; Volume 22, Issue 8 , 2008 , Pages 595-610 ; 02179849 (ISSN) Golnabi, H ; Azimi, P ; Sharif University of Technology
    2008
    Abstract
    In this article, the design and operation of a cylindrical capacitive sensor based on the dielectric reactance capacitance and conductance changes of the gap medium is reported. The proposed system was used to determine characteristics of different water liquids as a result of the capacitance and resistance variations. The air gap capacitance (dry signal) is measured and then by filling the gap with a liquid, the capacitance (wet signal) is monitored for different liquids. A reported sensor is used for the distilled, tap, boiled, and salt water measurements and the capacitance and resistance results are compared. A big difference of about 38.5 μF in the measured capacitance values for the... 

    Calculation of density of states in a 2D photonic crystal with separable profile of permittivity

    , Article Photonic Crystal Materials and Devices VII, San Jose, CA, 21 January 2008 through 23 January 2008 ; Volume 6901 , 2008 ; 0277786X (ISSN); 9780819470768 (ISBN) Baradaran Ghasemi, A. H ; Khorasani, S ; Latifi, H ; Atabaki, A. H ; The International Society for Optical Engineering (SPIE) ; Sharif University of Technology
    2008
    Abstract
    When the periodic permittivity of two-dimensional (2D) photonic crystal (PC) can be separated in x- and y- coordinates, one can consider the structure as two separate 1D photonic crystals, one of them being periodic in x coordinate and the other in y coordinate. If it is possible to find a proper separable permittivity function, we can approximate a 2D PC with two distinct 1D structures. One of the advantages is rapid calculation the density of state of a 2D PC. In this article an analytical calculation of the density of states for such a 2D PC has been done with the aim of taking this advantage. For calculating the density of states we use the effective resonance approach to analyze the 1D... 

    Time dependence of the surface plasmon resonance of copper nanorods

    , Article Journal of Physics Condensed Matter ; Volume 19, Issue 44 , 2007 ; 09538984 (ISSN) Azarian, A ; Iraji zad, A ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2007
    Abstract
    Copper nanorods have been synthesized by electrodeposition with different lengths in porous polycarbonate (PCT) membranes with a pore diameter of 50nm and a thickness of 4νm. The PCT membranes were dissolved in dichloromethane (CH2Cl2) and the solvent was replaced by methanol solutions. Extinction peaks at 587, 581 and 574nm were observed for the Cu nanorods with aspect ratio R = 6,8 and 10 in methanol, respectively. Polarization of the molecules of the medium around the wires changes the dielectric constant of the medium. Hence, the wavelength of the extinction peaks does not shows good agreement with calculations that were done on basis of Gans' theory with nominal dielectric constant of... 

    Extended energy approach to propagation problems in general anisotropic media

    , Article Scientia Iranica ; Volume 11, Issue 3 , 2004 , Pages 255-264 ; 10263098 (ISSN) Khorasani, S ; Rashidian, B ; Sharif University of Technology
    Sharif University of Technology  2004
    Abstract
    In this article, a new general approach has been presented for exact and efficient extraction of eigenpolarizations in anisotropic electromagnetic media with arbitrary constitutive relations. It is shown that the plane wave propagation eigenpolarizations in a linear homogeneous time-independent anisotropic media without free sources, can be obtained through extremizing the difference between stored electric and magnetic energies as a variational functional. It is demonstrated that at these stationary points the wave equation is satisfied by showing that each of the Maxwell curl equations may be obtained by using the other equation as a constraint. Furthermore, it is proven that the theorem... 

    Formation of terahertz superconducting photonic devices based on patterned irradiation

    , Article IEEE Transactions on Applied Superconductivity ; Volume 23, Issue 5 , Oct , 2013 ; 10518223 (ISSN) Kamrani, H ; Azadeh, M. S. S ; Kokabi, A ; Fardmanesh, M ; Sharif University of Technology
    2013
    Abstract
    A high-temperature superconductor slab irradiated by a desired pattern of light is proposed to behave as a completely controllable 2-D photonic media that could be applied in a wide range of photonic devices. In this case, the permittivity spatial variation, which is fundamentally required in many photonic devices, can be achieved by means of the selective variation of cooper-pair density under patterned irradiation. The process of photo-effect in superconductors is the proposed mechanism for the deformation of the spatial distribution of cooper-pair density and for the creation of nonuniform permittivity. In this perspective, the effects of nonuniform photon irradiation on the density of... 

    Measurements of the electrical parameters for different water samples

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 44, Issue 10 , 2011 , Pages 2175-2184 ; 02632241 (ISSN) Golnabi, H ; Sharif University of Technology
    Abstract
    The resistance and capacitance values of the water samples are measured by using two different cell probes (length 10 cm and 5 cm) and a measuring module. Measured conductivities for the different water samples are compared where the lowest conductivity is obtained for the distilled water (3.28 μS/cm) and the highest value is for the boiled water 325.91 μS/cm. Using the measured series resistance values, and by knowing the frequency (1 kHz), the imaginary part of permittivity value is also determined. The imaginary part of the permittivity for the distilled water with the long cell probe is about 0.524 × 10 -7 F/m (for the short probe is 0.523 × 10-7 F/m) while for the boiled water sample is... 

    Calculation of effective parameters of high permittivity integrated artificial dielectrics

    , Article IET Microwaves, Antennas and Propagation ; Volume 9, Issue 12 , September , 2015 , Pages 1287-1296 ; 17518725 (ISSN) Barzegar Parizi, S ; Rejaei ; Sharif University of Technology
    Institution of Engineering and Technology  2015
    Abstract
    An analysis is presented of the effective electromagnetic parameters of high-permittivity, anisotropic artificial dielectrics which are built by stacking arrays of metallic elements and conventional dielectric films, with adjacent arrays shifted with respect to each other. The effective parameters of the artificial dielectric are extracted from the scattering coefficients of plane electromagnetic waves which are normally or obliquely incident on a slab of the artificial material with finite thickness. These coefficients are derived from the generalised scattering matrix of a single layer of metallic elements which is computed using the integral equation technique. Both two-dimensional and... 

    Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: Physical parameters

    , Article Physics of Fluids ; Volume 32, Issue 7 , 2020 Omidi, J ; Mazaheri, K ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Plasma actuator is a flow control device to improve the aerodynamic performance of wind turbine blades at low airspeeds. One of the most robust numerical models for simulation of plasma actuator interaction with the fluid flow is the electrostatic model. This model is improved recently and is extensively verified by the authors. Due to the high cost of performing experimental optimizations, the optimized geometrical dimensions and materials of a plasma actuator may be sought by this numerical model. The aim of the present study is the aerodynamic enhancement of a DU21 wind turbine blade airfoil in which the effect of geometric parameters and the dielectric material is examined separately.... 

    A new model in correlating the activity coefficients of aqueous electrolyte solutions with ion pair formation

    , Article Fluid Phase Equilibria ; Volume 261, Issue 1-2 , December , 2007 , Pages 313-319 ; 03783812 (ISSN) Mortazavi Manesh, S ; Taghikhani, V ; Ghotbi, C ; Sharif University of Technology
    2007
    Abstract
    In this work, the Ion Pair Modified Ghotbi-Vera Mean Spherical Approximation (IP-MGV-MSA) model was proposed to correlate the mean ionic activity coefficients (MIAC) for a number of symmetric and asymmetric aqueous electrolyte solutions at 25 °C. The new model is based on the recently proposed MGV-MSA model by Mortazavi-Manesh et al. In the IP-MGV-MSA model, the effects arising from the ion pair formation in the electrolyte solution was taken into account. Also, in the proposed model, while the cation diameter as well as the relative permittivity of water was considered to be dependent on electrolyte concentration, the anion diameter was independent of electrolyte concentration. The results... 

    Engineering of metallic nanorod-based hyperbolic metamaterials for broadband applications operating in the infrared regime

    , Article Applied Nanoscience (Switzerland) ; Volume 11, Issue 1 , 2021 , Pages 229-240 ; 21905509 (ISSN) Baqir, M. A ; Farmani, A ; Raza, M ; Niaz Akhtar, M ; Hussain, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Metamaterials are manmade structures that have attained considerable attention over the past 2 decades in the modern fields like cloaking, sensing, and imaging owing to their ability to harness electromagnetic fields. In this regard, we have inspected the dielectric properties of the hyperbolic metamaterials (HMM) made of metallic nanorods and dielectric medium at the infrared wavelength regime. The periodically arranged subwavelength-sized metallic nanorods embedded in the silicon dioxide (SiO 2) substrate glass. The spacing between two adjacent nanorods is of subwavelength in size. Furthermore, effective permittivity of the metamaterial has been analyzed by employing the Maxwell Garnett... 

    Oriented hyperlens based on passivated porous graphene phases for sub-diffraction visible imaging

    , Article Optical Materials Express ; Volume 11, Issue 9 , 2021 , Pages 2839-2853 ; 21593930 (ISSN) Sadeghi, M. N ; Yazdanfar, P ; Rashidian, B ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    The performance of conventional imaging lenses, relying on the phase transformation of propagating waves, is impairing due to the aberration and diffraction limits. For imaging beyond the diffraction limit, different superlens designs have been proposed. Although subdiffraction resolution imaging in the near field has been realized by the superlenses with negative refractive index, magnification of the subwavelength objects into the far field has not been fulfilled. Imaging using “hyperlens” is promising to overcome the energy spreading associated with diffraction, by utilizing negative permittivity parallel to the optical axis, and positive permittivity perpendicular to it. Among various... 

    Waves in linear time-varying dielectric media

    , Article 16th European Conference on Antennas and Propagation, EuCAP 2022, 27 March 2022 through 1 April 2022 ; 2022 ; 9788831299046 (ISBN) Sotoodehfar, A ; Mirmoosa, M. S ; Tretyakov, S. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, focusing on the frequency domain, we write the constitutive relation and the Helmholtz equation for linear, dispersive, and inhomogeneous time-varying media. Next, by assuming spatial homogeneity, we simplify the equations and explain how to calculate dispersion curves (the angular frequency with respect to the wave vector) for propagating waves. Furthermore, we show that under the simplifying assumption of instantaneous response, the developed general approach provides the same dispersion curves as reported earlier for the dispersion-less model of time-varying dielectric media. We believe that this study is important for investigations of wave phenomena in time-varying media,... 

    General solution to wave propagation in media undergoing arbitrary transient or periodic temporal variations of permittivity

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 35, Issue 11 , 2018 , Pages 29232932- ; 07403224 (ISSN) Chegnizadeh, M ; Mehrany, K ; Memarian, M ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    A novel and general formulation for wave propagation in time-varying media is presented. Unlike previousreports, our formalism is able to solve propagation in media with arbitrary time variations of permittivity orpermeability, for both transient and steady-state periodic variations. The formulation is approximate yet strikingly accurate in most practical cases. The provided closed-form expressions show that the normalized averagepower after the transition of the permittivity does not depend on the details of the transition, while the energydensity does. Some important discussions are made about time-periodic media, and it is shown that there is anaccumulation of energy when the temporal... 

    Photonic band structure of isotropic and anisotropic Abrikosov lattices in superconductors

    , Article Physica C: Superconductivity and its Applications ; Volume 467, Issue 1-2 , December , 2007 , Pages 51-58 ; 09214534 (ISSN) Zandi, H ; Kokabi, A ; Jafarpour, A ; Khorasani, S ; Fardmanesh, M ; Adibi, A ; Sharif University of Technology
    2007
    Abstract
    We have performed a numerical solution for band structure of an Abrikosov vortex lattice in type-II superconductors forming a periodic array in two dimensions for applications of incorporating the photonic crystals concept into superconducting materials with possibilities for optical electronics. The implemented numerical method is based on the extensive numerical solution of the Ginzburg-Landau equation for calculating the parameters of the two-fluid model and obtaining the band structure from the permittivity for both orthogonal polarizations, which depends on the above parameters and the frequency. This is while the characteristics of such crystals highly vary with an externally applied... 

    Extraction of effective constitutive parameters of artificial media using Bloch modes

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 11 , 2019 , Pages 3226-3235 ; 07403224 (ISSN) Sheikh Ansari, A ; Rejaei, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    The effective constitutive parameters of a three-dimensional periodic structure are calculated using its Bloch modes. These modes and their propagation constants are obtained from eigenvectors and eigenvalues of the generalized transfer matrix of a unit layer of the structure. Effective bulk permittivity and permeability tensors of the medium are obtained when two of the Bloch modes are dominant, i.e., propagate without significant decay inside the medium. The effect of the strongly decaying Bloch modes, which are excited at the interface with a conventional medium, are included by means of surface impedance matrices. The results are in excellent agreement with full-wave electromagnetic... 

    Extraction of effective constitutive parameters of artificial media using bloch modes

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 36, Issue 11 , 2019 , Pages 3226-3235 ; 07403224 (ISSN) Sheikh Ansari, A ; Rejaei, B ; Sharif University of Technology
    OSA - The Optical Society  2019
    Abstract
    The effective constitutive parameters of a three-dimensional periodic structure are calculated using its Bloch modes. These modes and their propagation constants are obtained from eigenvectors and eigenvalues of the generalized transfer matrix of a unit layer of the structure. Effective bulk permittivity and permeability tensors of the medium are obtained when two of the Bloch modes are dominant, i.e., propagate without significant decay inside the medium. The effect of the strongly decaying Bloch modes, which are excited at the interface with a conventional medium, are included by means of surface impedance matrices. The results are in excellent agreement with full-wave electromagnetic... 

    Precision photonic band structure calculation of Abrikosov periodic lattice in type-II superconductors

    , Article Physica C: Superconductivity and its Applications ; Volume 460-462 II, Issue SPEC. ISS , 2007 , Pages 1222-1223 ; 09214534 (ISSN) Kokabi, A ; Zandi, H ; Khorasani, S ; Fardmanesh, M ; Sharif University of Technology
    2007
    Abstract
    We have performed a numerical solution for band structure of an Abrikosov vortex lattice in type-II superconductors forming a periodic array in two dimensions for applications of incorporating the photonic crystals concept into superconducting materials with possibilities for optical electronics. The implemented numerical method is based on the extensive numerical solution of the Ginzburg-Landau equation for calculating the parameters of the two-fluid model and obtaining the band structure from the permittivity, which depends on the above parameters and the frequency. This is while the characteristics of such crystals highly vary with an externally applied static normal magnetic field,... 

    Photonic band structure of abrikosov lattices in superconductors

    , Article Photonic Crystal Materials and Devices VI, San Jose, CA, 22 January 2007 through 25 January 2007 ; Volume 6480 , 2007 ; 0277786X (ISSN) Zandi, H ; Kokabi, A ; Jafarpour, A. A ; Khorasani, S ; Fardmanesh, M ; Adibi, A ; Sharif University of Technology
    2007
    Abstract
    We have performed a numerical solution for band structure of an Abrikosov vortex lattice in type-11 superconductors forming a periodic array in two dimensions for applications of incorporating the photonic crystals concept into superconducting materials with possibilities for optical electronics. The implemented numerical method is based on the extensive numerical solution of the Ginzburg-Landau equation for calculating the parameters of the two-fluid model and obtaining the band structure from the permittivity, which depends on the above parameters and the frequency. This is while the characteristics of such crystals highly vary with an externally applied static normal magnetic field,... 

    Legendre polynomial expansion for analysis of linear one-dimensional inhomogeneous optical structures and photonic crystals

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 23, Issue 5 , 2006 , Pages 969-977 ; 07403224 (ISSN) Chamanzar, M ; Mehrany, K ; Rashidian, B ; Sharif University of Technology
    Optical Society of American (OSA)  2006
    Abstract
    A Legendre polynomial expansion of electromagnetic fields for analysis of layers with an inhomogeneous refractive index profile is reported. The solution of Maxwell's equations subject to boundary conditions is sought in a complete space spanned by Legendre polynomials. Also, the permittivity profile is interpolated by polynomials. Different cases including computation of reflection-transmission coefficients of inhomogeneous layers, band-structure extraction of one-dimensional photonic crystals whose unit-cell refractive index profiles are inhomogeneous, and inhomogeneous planar waveguide analysis are investigated. The presented approach can be used to obtain the transfer matrix of an...