Loading...
Search for: quantum-computation
0.007 seconds
Total 41 records

    Quantum 2-body hamiltonian for topological color codes

    , Article Fortschritte der Physik ; Volume 57, Issue 11-12 , 2009 , Pages 1103-1110 ; 00158208 (ISSN) Bombin, H ; Kargarian, M ; Martin Delgado, M. A ; Sharif University of Technology
    2009
    Abstract
    We introduce a two-body quantum Hamiltonian model with spins1/2 located on the vertices of a 2D spatial lattice. The model exhibits an exact topological degeneracy in all coupling regimes. This is a remarkable non-perturbative effect. The model has a Z2 ×Z2 gauge group symmetry and string-net integrals of motion. There exists a gapped phase in which the low-energy sector reproduces an effective topological color code model. High energy excitations fall into three families of anyonic fermions that turn out to be strongly interacting. All these, and more, are new features not present in honeycomb lattice models like Kitaev model. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  

    Introduction to the world of Quantum Computers

    , Article 5th IEEE International Conference on Cognitive Informatics, ICCI 2006, Beijing, 17 July 2006 through 19 July 2006 ; Volume 2 , 2006 , Pages 760-764 Jafarpour, S ; Sharif University of Technology
    2006
    Abstract
    The world is changing very fast, and so are the ways of communication and computation. This article is about a new communication and information technology based on the principles of the quantum physics. At first we discuss about some fundamental paradigms of Quantum Computers World, and then introducing the basis of quantum computation: "QBit". Afterthat we will explain some magic properties of this atomic QBit including Quantum Measurement, Superposition, Entanglement, etc. Then we introduce Quantum Gates the basic modules of the next generation computers. Their relation with the ordinary logical gates and the properties of some of the most useful quantum gates. And finally, we will have a... 

    Entanglement from dissipative dynamics into overlapping environments

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Vol. 90, issue. 6 , Dec , 2014 Mengoni, R ; Memarzadeh, L ; Mancini, S ; Sharif University of Technology
    Abstract
    We consider two ensembles of qubits dissipating into two overlapping environments, that is, with a certain number of qubits in common that dissipate into both environments. We then study the dynamics of bipartite entanglement between the two ensembles by excluding the common qubits. To get analytical solutions for an arbitrary number of qubits we consider initial states with a single excitation and show that the largest amount of entanglement can be created when excitations are initially located among side (noncommon) qubits. Moreover, the stationary entanglement exhibits a monotonic (nonmonotonic) scaling versus the number of common (side) qubits  

    Power and energy applications based on quantum computing: the possible potentials of grover’s algorithm

    , Article Electronics (Switzerland) ; Volume 11, Issue 18 , 2022 ; 20799292 (ISSN) Habibi, M. R ; Golestan, S ; Soltanmanesh, A ; Guerrero, J. M ; Vasquez, J. C ; Sharif University of Technology
    MDPI  2022
    Abstract
    In quantum computing, calculations are achieved using quantum mechanics. Typically, two main phenomena of quantum mechanics (i.e., superposition and entanglement) allow quantum computing to solve some problems more efficiently than classical algorithms. The most well-known advantage of quantum computing is the speedup of some of the calculations, which have been performed before by classical applications. Scientists and engineers are attempting to use quantum computing in different fields of science, e.g., drug discovery, chemistry, computer science, etc. However, there are few attempts to use quantum computing in power and energy applications. This paper tries to highlight this gap by... 

    Introduction to Categorical Aspects of Topological Quantum Computation

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Fatimah (Author) ; Karimipour, Vahid (Supervisor)
    Abstract
    One of the problems facing quantum computation is errors due to interaction with the environment which destroy coherence of quantum states. Most schemes to design a quantum computer therefore focus on finding ways to minimize the interactions of the qubits with the environment. Constructing such systems with large numbers of qubits which are infallible is a hard task and far from being achieved in the near future. There is another quantum computational model which is called topological quantum computation, proposing a different solution. Qubits of this model are quasiparticles of a 2-dimensional topologically ordered system that are called Anyons. In this model gates are nonabelian... 

    Quantum Process Tomography: A New Approach Based on Moments

    , M.Sc. Thesis Sharif University of Technology Ghalaii, Masoud (Author) ; Tayefeh Rezakhani, Ali (Supervisor)
    Abstract
    In this report, we have formulated a new technique for characterizing quantum optical processes based on probing unknown processes only with coherent states and simply by measuring normally-ordered moments of output states. Our method has two substantial advantages in comparison with previous methods.First, for practical purposes of uantum-optical communications and information, predicting of the classicality or nonclassicality of output states from an unknown quantum process is generally important. Because of truncation of the Hilbert space in the Fock basis and/or exploiting Klauder theorem, antecedent methods failed to carry out foretelling the [non]classicality features of the process’... 

    Measurement-based Quantum Computation in Correlation Space

    , Ph.D. Dissertation Sharif University of Technology Koochakie, Mir Mohammad Reza (Author) ; Karimipour, Vahid (Supervisor) ; Rezakhani, Ali (Supervisor)
    Abstract
    Quantum computation is an unconventional way to compute employing quantum Physics. In this way of computation, quantum superposition and quantum entanglement have crucial roles to surpass common ways of computation. There is a special method for quantum computing which is known as “measurementbased quantum computation” (MBQC). In this method, sequential single-site measuring a highly-entangled state is used to perform computation. All of the existing MBQC models can be described in the “correlation space,” a virtual space corresponding to the physical space, of tensor network states. In this thesis, we introduce a recipe for designing such MBQC models. We elaborate our designing for... 

    Computing on quantum shared secrets for general quantum access structures

    , Article Quantum Information Processing ; Volume 18, Issue 4 , 2019 ; 15700755 (ISSN) Bassirian, R ; Boreiri, S ; Karimipour, V ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Quantum secret sharing is a method for sharing a secret quantum state among a number of individuals such that certain authorized subsets of participants can recover the secret shared state by collaboration and other subsets cannot. In this paper, we first propose a method for sharing a quantum secret in a basic (2, 3) threshold scheme, only by using qubits and the 7-qubit CSS code. Based on this (2, 3) scheme, we propose a new (n, n) scheme, and we also construct a quantum secret sharing scheme for any quantum access structure by induction. Secondly, based on the techniques of performing quantum computation on 7-qubit CSS codes, we introduce a method that authorized subsets can perform... 

    Hardware architecture for supersingular isogeny diffie-hellman and key encapsulation using a fast montgomery multiplier

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 68, Issue 5 , 2021 , Pages 2042-2050 ; 15498328 (ISSN) Farzam, M. H ; Bayat Sarmadi, S ; Mosanaei Boorani, H ; Alivand, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Public key cryptography lies among the most important bases of security protocols. The classic instances of these cryptosystems are no longer secure when a large-scale quantum computer emerges. These cryptosystems must be replaced by post-quantum ones, such as isogeny-based cryptographic schemes. Supersingular isogeny Diffie-Hellman (SIDH) and key encapsulation (SIKE) are two of the most important such schemes. To improve the performance of these protocols, we have designed several modular multipliers. These multipliers have been implemented for all the prime fields used in SIKE round 3, on a Virtex-7 FPGA, showing a time and area-time product improvement of up to 60.1% and 64.5%,... 

    Entanglement and quantum phase transitions in matrix-product spin-1 chains

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 75, Issue 5 , 2007 ; 10502947 (ISSN) Alipour, S ; Karimipour, V ; Memarzadeh, L ; Sharif University of Technology
    2007
    Abstract
    We consider a one-parameter family of matrix-product states of spin-1 particles on a periodic chain and study in detail the entanglement properties of such a state. In particular, we calculate exactly the entanglement of one site with the rest of the chain, and the entanglement of two distant sites with each other, and show that the derivative of both these properties diverge when the parameter g of the states passes through a critical point. Such a point can be called a point of quantum phase transition, since at this point the character of the matrix-product state, which is the ground state of a Hamiltonian, changes discontinuously. We also study the finite size effects and show how the... 

    Synthesis and Properties of Cationic Polynulcear Complexes of Manganese with the Anionic Keggin Type Polyoxometalates as Single Molecule Magnets Hx[Mn4O2(CH3COO)7(bipy)2]n[Kegiin-Polyoxometalates]m.yH2O

    , M.Sc. Thesis Sharif University of Technology Daneshmand Kashani, Pargol (Author) ; Mohammdi Boghaei, Davar (Supervisor)
    Abstract
    Single molecule magnets due to their magnetic tunneling effect and the interaction they have with an external magnetic field are used widely in quantum computing and also the storage of data with high capacities. Polyoxometalates that are used as counter ions for cationic single molecule magnets, are able to affect their spin-couple nature via a magnetic exchange and also have an influence on the crystal accumulation in order to change the magnetic property of the molecule. In this research the probability of sedimenting a cationic single molecule magnet, [Mn4O2(CH3COO)7(bipy)2]+, with the use of anionic polyoxometalates with Keggin structures has been investigated. Thus, the single... 

    Silicon Vacancy in 4H-SiC: Many-body Electronic Structure

    , M.Sc. Thesis Sharif University of Technology Najafi Ivaki, Moein (Author) ; Vesaghi, Mohammad Ali (Supervisor)
    Abstract
    The silicon vacancy in silicon carbide is a strong emergent candidate for applications in quantum information processing. 4H, 6H and 3C polytypes of SiC all host coherent and optically addressable defect spin states. Electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) investigations suggest that silicon vacancy point defects in SiC possess properties similar to those of the NV center in diamond. We provide a new theoretical frame to explain a wider range of experimental results. Employing a proposed generalized Hubbard model, with the help of electronic structure programs, DFT, second quantization, and various computational approaches, we obtain new... 

    Time Independent Quantum Circuits with Local Interactions

    , M.Sc. Thesis Sharif University of Technology Kianvash, Farzad (Author) ; Karimipour, Vahid (Supervisor)
    Abstract
    one of the important challenges for implementation of Quantum Computation is fabrication of Quantum Wires that transport the Quantum Information from one part of the Quantum Hardware to the other parts. Heisenberg Spin Chains are promising candidate for this. In article [28] Gaussian wave packets on the spin chains are used to encode the logical qubits. In this model, to implement unitary operation on these qubits, extra interaction are designed in some parts of the spin chains. As Gaussian wave packets move along this interactions, the desired unitary operators act on them. In fact, this is an static model without external control to perform Quantum Computation. In spite of many interesting... 

    Topological Quantum Computation and the Stability of Topological Memories

    , Ph.D. Dissertation Sharif University of Technology Mohseninia, Razieh (Author) ; Karimipour, Vahid (Supervisor)
    Abstract
    antum computers are necessary to simulate quantum systems. e fragility of qubits in presence of decoherence and external noise is the biggest obstacle in realizing a quantum computer. To overcome su problems, topological quantum computation has been introduced by Kitaev that combines the main quantum feature of the quantum world, namely, superposition of states, with the robustness of classical bits whi is the result of a macroscopic number of very small entities, comprising ea bit. In this way, topological features whi are robust against local perturbations are used for storing information. Kitaev’s model is a famous many-body model, whi has topologically degenerate ground states,... 

    Quantum Aspects of The Origin of Life

    , M.Sc. Thesis Sharif University of Technology Khezr Seddigh Mazinani, Shobeir (Author) ; Shafie, Afshin (Supervisor)
    Abstract
    Many have claimed that quantum mechanics is playing a non-trivial, i.e. further from merely governing atomic and molecular realm, in living. If so, clearly quantum mechanics should have played a key role in the origin of life especially in the transition from chemical evolution to biological (Darwinian) evolution. Long before quantum aspects of living systems came to focus, It was known that all the amino acids are right handed and all the sugars are left handed in living systems. Bio-molecules having the same sense of chirality, i.e. optical activity, are called biohomochirality. Detailed studies on the structure and functioning of biomolecules buttressed the idea that the selection of... 

    Conformational Study of Lidocaine and Bupivacaine by Quantum Mechanical Methods

    , M.Sc. Thesis Sharif University of Technology Rabani, Kosar (Author) ; Tafazoli, Mohsen (Supervisor)
    Abstract
    In this thesis the structure and potential energy surfaces of Lidocaine and bupivacaine were studied by DFT method at B3LYD level calculation using 6-311++G basis set. Both compounds were calculated in water, dimetylsulfoxide, and carbontetracholoride as the solvent using the PCM model.Since the molecules meant to be studied were polar, level of energy in polar solvent is higher than non-polar solvent . The most considerable increase was observed in the amount of energy at 0.01 hartree for water compared with carbon tetracholoride. By changeing in solvent environment the most considerable difference in bond length was observed as 0.01 Ǻ.The spin spin coupling constants 1JCH, 2JCH, 2JHH,... 

    Study of Conformational of Fentanyl by Quantum Mechanic Methods

    , M.Sc. Thesis Sharif University of Technology Malekjalali, Mahshid (Author) ; Tafazzoli, Mohsen (Supervisor)
    Abstract
    The study of energy and structure of fentanyl was performed by using quantum mechanical calculations method of Density Functional Theory(DFT) at the computational level B3 L YP and the basis set 6-311++G^(**). Proton-proton and proton-carbon coupling constants were computed around dihedral angles  and . All Karplas equation indicating the relation between coupling constants (namely 〖(_^"1" )"J" 〗_"CH" ^ ، 〖(_^"2" )"J" 〗_"HH" ^ ، 〖(_^"2" )"J" 〗_"CH" ^ ، 〖(_^"2" )"J" 〗_"CH" ^ ، 〖(_^"3" )"J" 〗_"CH" ^ ، 〖(_^"3" )"J" 〗_"HH" ^ and appropriate dihedral angles were extracted. The impact of three water solvents, dimethyl sulfoxide, and carbon tetrachloride with different polarity on the values of... 

    Simulating of X-states and the Two-qubit XYZ Heisenberg System on IBM Quantum Computer

    , M.Sc. Thesis Sharif University of Technology Karimi, Mahsa (Author) ; Karimipour, Vahid (Supervisor)
    Abstract
    Two qubit density matrices which are of X-shape, are a natural generalization of Bell Diagonal States recently simulated on the IBM quantum device. We propose a quantum circuit for simulation of a general X-state on the same quantum device and study its properties for several values of the extended parameter space. We also show by specific measurements, that their X-shape is robust against noisy quantum gates. To further physically motivate this study, we invoke the two-spin Heisenberg XYZ system and show that for a wide class of initial states, it leads to dynamical density matrices which are X-states. Due to the symmetries of this Hamiltonian, we show that by only two qubits, one can... 

    Design and optimization of fully digital SQUID based on bi-directional RSFQ

    , Article Journal of Superconductivity and Novel Magnetism ; Vol. 27, issue. 7 , 2014 , p. 1623-1628 Foroughi, F ; Bozbey, A ; Fardmanesh, M ; Sharif University of Technology
    Abstract
    Bi-directional RSFQ benefits from using both positive and negative SFQ pulses to manipulate and transfer digital data. This allows more flexibility in the design of simpler circuits with enhanced performance. On the other hand, using the AC bias current, one can replace on-chip resistive current distributors with inductors. This resembles RQL logic, but in contrast to RQL, it is possible to use the well-established standard RSFQ cells in bi-directional RSFQ. These two advantages (energy-efficient computation and flexibility in design) make bi-directional RSFQ a powerful tool in next-generation supercomputers and also compatible with ultra-low-temperature quantum computers. In this work, to... 

    Entanglement dynamics for qubits dissipating into a common environment

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 87, Issue 3 , 2013 ; 10502947 (ISSN) Memarzadeh, L ; Mancini, S ; Sharif University of Technology
    2013
    Abstract
    We provide an analytical investigation of the entanglement dynamics for a system composed of an arbitrary number of qubits dissipating into a common environment. Specifically, we consider product initial states with a given number of excitations whose evolution remains confined on low-dimensional subspaces of the operators space. We then find for which pairs of qubits entanglement can be generated and can persist at a steady state. Finally, we determine the stationary distribution of entanglement as well as its scaling versus the total number of qubits in the system