Loading...
Search for: size-effects
0.009 seconds
Total 104 records

    Hydrothermal preparation of TiO2-ZnO nano core-shell structure with quantum size effect

    , Article AIP Conference Proceedings, 12 May 2011 through 15 May 2011 ; Volume 1400 , May , 2011 , Pages 425-428 ; 0094243X (ISSN) ; 9780735409712 (ISBN) Asl, S. K ; Rad, M. K ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Nano sized ZnO on TiO 2 spherical core shells were prepared by using hydrothermal method. The particle size of initial TiO 2 was around 20 nm, and the specific surface area was 50 m2/gr. Different ratios of TiO 2 and ZnO applied to synthesize core shell particle. X-ray diffraction (XRD) used to phase characterization and crystalline size, scanning electron microscopy (SEM) to morphology and microstructure investigations. S. Brunauer, P. H. Emmett and E. Teller method (BET) to find specific surface area, Diffusive UV-visible-NIR spectrometry to bang gap calculations. The results indicate that powders with a shell of zinc oxide in specific range have the quantum size effect. Titanium oxide and... 

    Molecular dynamic investigation of size-dependent surface energy of icosahedral copper nanoparticles at different temperature

    , Article Letters on Materials ; Volume 6, Issue 4 , 2016 , Pages 266-270 ; 22185046 (ISSN) Myasnichenko, V. S ; Razavi, M ; Outokesh, M ; Sdobnyakov, N. Y ; Starostenkov, M. D ; Sharif University of Technology
    Institute for Metals Superplasticity Problems of Russian Academy of Sciences  2016
    Abstract
    The study of the surface free energy (SFE) of metal at nanoscale is far from perfection and the obtained results are approach dependent. Despite the extensive investigations, there is still a lack of a complete model for the surface energy of metallic nanoparticles which could be able to consider effects of the particle size and shape. Most studies emphasize the size dependence of the melting characteristics, rather than considering the lattice deformation and the surface energy of nanoclusters. This research aimed at computation of SFE of copper nanoclusters depending on temperature over a wide range of sizes, containing 147 to 10179 atoms. We employed molecular dynamics simulation by using... 

    Nano-resonator frequency response based on strain gradient theory

    , Article Journal of Physics D: Applied Physics ; Vol. 47, Issue. 36 , 2014 ; ISSN: 00223727 Miandoab, E. M ; Yousefi Koma, A ; Pishkenari, H. N ; Fathi, M ; Sharif University of Technology
    Abstract
    This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results... 

    Effect of coarse aggregate volume on fracture behavior of self compacting concrete

    , Article Construction and Building Materials ; Volume 52 , 15 February , 2014 , Pages 137-145 ; ISSN: 09500618 Nikbin, I. M ; Beygi, M. H. A ; Kazemi, M. T ; Vaseghi Amiri, J ; Rahmani, E ; Rabbanifar, S ; Eslami, M ; Sharif University of Technology
    Abstract
    This paper presents the effect of volume of coarse aggregate on fracture characteristics of self- compacting concrete (SCC). Based on an experimental programme, a series of three point bending tests were carried out on 58 notched beams. SCC was prepared with coarse aggregate in varying percentages of 30%, 40%, 50% and 60% (as the percentage of the total aggregate volume). For all mixes, the fracture parameters were analyzed by the work-of- fracture method (WFM) and by the size effect method (SEM) to obtain a suitable correlation between these methods which is used to calibrate fracture numerical models. The results showed that with decrease of volume of coarse aggregate from 60% to 30% in... 

    Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory

    , Article JVC/Journal of Vibration and Control ; Volume 18, Issue 5 , 2012 , Pages 696-711 ; 10775463 (ISSN) Kahrobaiyan, M. H ; Asghari, M ; Hoore, M ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In this paper, the nonlinear forced-vibration of Euler-Bernoulli beams with large deflections is investigated based on the modified couple stress theory, a non-classical theory capable of capturing size effects. The classical theory is unable to predict the size effects. In systems with the dimensions in order of microns and sub-microns the size effects are very significant. For some specific beams subjected to a concentrated force at its middle as the harmonic exciter, the size-dependent responses are investigated for primary, super-harmonic and sub-harmonic resonances. The results show that the frequency-responses of the system are highly size-dependent  

    A strain gradient functionally graded Euler-Bernoulli beam formulation

    , Article International Journal of Engineering Science ; Volume 52 , 2012 , Pages 65-76 ; 00207225 (ISSN) Kahrobaiyan, M. H ; Rahaeifard, M ; Tajalli, S. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    A size-dependent functionally graded Euler-Bernoulli beam model is developed based on the strain gradient theory, a non-classical theory capable of capturing the size-effect in micro-scaled structures. The governing equation and both classical and non-classical boundary conditions are obtained using variational approach. To develop the new model, the previously used simplifying assumption which considered the length scale parameter to be constant through the thickness is avoided in this work. As a consequence, equivalent length scale parameters are introduced for functionally graded microbeams as functions of the constituents' length scale parameters. Moreover, a generally valid closed-form... 

    Static pull-in analysis of microcantilevers based on the modified couple stress theory

    , Article Sensors and Actuators, A: Physical ; Volume 171, Issue 2 , 2011 , Pages 370-374 ; 09244247 (ISSN) Rahaeifard, M ; Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    This paper investigates the deflection and static pull-in voltage of microcantilevers based on the modified couple stress theory, a non-classic continuum theory capable to predict the size effects for structures in micron and sub-micron scales. It is shown that the couple stress theory can remove the gap between the experimental observations and the classical theory based simulations for the static pull-in voltage  

    Nanoindentation study of cementite size and temperature effects in nanocomposite pearlite: A molecular dynamics simulation

    , Article Current Applied Physics ; Volume 16, Issue 9 , 2016 , Pages 1015-1025 ; 15671739 (ISSN) Ghaffarian, H ; Karimi Taheri, A ; Ryu, S ; Kang, K ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    We carry out molecular dynamics simulations of nanoindentation to investigate the effect of cementite size and temperature on the deformation behavior of nanocomposite pearlite composed of alternating ferrite and cementite layers. We find that, instead of the coherent transmission, dislocation propagates by forming a widespread plastic deformation in cementite layer. We also show that increasing temperature enhances the distribution of plastic strain in the ferrite layer, which reduces the stress acting on the cementite layer. Hence, thickening cementite layer or increasing temperature reduces the likelihood of dislocation propagation through the cementite layer. Our finding sheds a light on... 

    Effective shear modulus of solids reinforced by randomly oriented-/aligned-elliptic nanofibers in couple stress elasticity

    , Article Composites Part B: Engineering ; Volume 117 , 2017 , Pages 150-164 ; 13598368 (ISSN) Shodja, H. M ; Alemi, B ; Sharif University of Technology
    Abstract
    Nowadays, by adding a small amount (about 0.5–5% by weight) of a desired nanomaterial to a matrix having certain properties one may design a multifunctional nanocomposites with a remarkably improved macroscopic properties of interest. The capability of conventional continuum theories in treating the problems of embedded ultra-small inhomogeneity with any of its dimensions comparable to the characteristic lengths of the involved constituent phases is questioned, mainly, on the grounds of the accuracy and the size effect. The micromechanical framework based on the Eshelby's ellipsoidal inclusion theory [1] which has been widely used to estimate the overall behavior of composites falls under... 

    Size influence of specimens and maximum aggregate on dam concrete: compressive strength

    , Article Journal of Materials in Civil Engineering ; Volume 21, Issue 8 , 2009 , Pages 349-355 ; 08991561 (ISSN) Khaloo, A. R ; Mohamadi Shooreh, M. R ; Askari, S. M ; Sharif University of Technology
    2009
    Abstract
    The compressive strength of mass concrete in dams is obtained from laboratory experiments of various cylindrical specimens with diameters of 150, 250, and 300 mm, and heights of 300, 500, and 450 mm, respectively. These specimens with 37.5, 75, and 150 mm maximum size of aggregate were investigated. The 7- and 90-day compressive strength of concrete was found to be between 20 and 58 MPa depending on the size of the specimens. The results reveal the existence of a significant size effect. Based on test results, relationships between the strength of mass concrete specimens and their size and shape are developed. Finally, results and a discussion are presented regarding compressive strength... 

    Investigation of Thermodynamic and Dynamic Properties of Some Solids and Fluids with Nano Dimensions Using Molecular Dynamics Simulation

    , Ph.D. Dissertation Sharif University of Technology Akbarzadeh, Hamed (Author) ; Parsafar, Gholam Abbas (Supervisor)
    Abstract
    The physical characteristics of Pt nanoclusters with different sizes (256-8788 atoms) have been investigated via molecular dynamics simulations. The Pt-Pt radial distribution function, internal energy, heat capacity, enthalpy, entropy of the nanoclusters are calculated at some temperatures. The melting point predicted by the various properties is consistent with each other and shows that the melting temperature increases with the particle size. We have calculated the Gibbs free energy for the Pt bulk and also for its nanoparticle. We have used the thermodynamic integration method to obtain the Gibbs free energy. The total Gibbs free energy is taken as the sum of its central bulk and its... 

    Finite Element Modelling of Damage in concrete and FRC under static and cyclic loading using Microplane Method

    , M.Sc. Thesis Sharif University of Technology Shishehbor, Mehdi (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Concrete as a heterogeneous, quasibrittle and practical material has always been a challenging material for modeling. Although numerous models have been proposed since now, many of them have some deficits. Microplane is a multiscale model which introduces some micro-planes as interaction planes between concete and aggregates. To generate concrete behavior, stress-strain relations are established on these micro-planes. In the present study, two prominent microplane models, M2 and M4, has been used in 2D and 3D Finite element framework. M2 model has been applied and developed to produce FRC behavior for uniaxial tension and compression under static and cyclic loading. To better optimize M2... 

    A Formulation for the Characteristic Lengths FCC in First Gradient Elasticity Via Sutton-Chen Potential

    , M.Sc. Thesis Sharif University of Technology Tehranchi, Ali (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    The  usual  continuum  theories  are  inadequate  in  predicting  the  mechanical  behavior of solids in presence of small defects and stress concentrators; it is well known that such continuum methods are unable to detect the change of the size of  the  inhomogeneities  and  defects.   For  these  reasons  various  augmented  continuum theories and strain gradient theories have been proposed in the literature. The major difficulty in implication of these theories lies in the lack of information  about  the  additional  material  constants.  For  fcc  metals,  for  calculation of the associated characteristic lengths which arise in first strain gradient  theory,  an ... 

    Effect of source strength on dislocation pileups in the presence of stress gradients

    , Article Philosophical Magazine ; Volume 95, Issue 20 , 2015 , Pages 2175-2197 ; 14786435 (ISSN) Zamani, Z ; Shishvan, S. S ; Assempour, A ; Sharif University of Technology
    Abstract
    The behaviour of a dislocation pileup with a finite-strength source is investigated in the presence of various stress gradients within a continuum model where a free-dislocation region exists around the source. Expressions for dislocation density and stress field within the pileup are derived for the situation where there are first and second spatial gradients in applied stress. For a pileup configuration under an applied stress, yielding occurs when the force acting on the leading dislocations at the pileup tips reaches the obstacle strength, and at the same time, it is required that the source be at the threshold stress for dislocation production. A numerical methodology is presented to... 

    An embedded couple stress micro-/nano-obstacle with micro-inertia incident upon by SH-waves

    , Article Acta Mechanica ; Volume 229, Issue 8 , 2018 , Pages 3333-3354 ; 00015970 (ISSN) Shodja, H. M ; Ghafarollahi, A ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    An elliptic micro-/nano-obstacle bonded to an infinite body incident upon by SH-waves, where both domains are couple stress media with micro-inertia, is of major concern. The formulation of this problem in the mathematical framework of couple stress elasticity with micro-inertia leads to angular and radial Mathieu differential equations which are solved analytically. These equations carry two characteristic lengths which are peculiar to the discrete nature of each domain enabling the capture of size effect, dispersion phenomenon, as well as the enhancement of the accuracy of the results. For verification, the ratio of the semi-axis of the elliptic obstacle is set equal to 1, and the result... 

    Entanglement and quantum phase transitions in matrix-product spin-1 chains

    , Article Physical Review A - Atomic, Molecular, and Optical Physics ; Volume 75, Issue 5 , 2007 ; 10502947 (ISSN) Alipour, S ; Karimipour, V ; Memarzadeh, L ; Sharif University of Technology
    2007
    Abstract
    We consider a one-parameter family of matrix-product states of spin-1 particles on a periodic chain and study in detail the entanglement properties of such a state. In particular, we calculate exactly the entanglement of one site with the rest of the chain, and the entanglement of two distant sites with each other, and show that the derivative of both these properties diverge when the parameter g of the states passes through a critical point. Such a point can be called a point of quantum phase transition, since at this point the character of the matrix-product state, which is the ground state of a Hamiltonian, changes discontinuously. We also study the finite size effects and show how the... 

    Large-scale testing on specific fracture energy determination of dam concrete

    , Article International Journal of Fracture ; Volume 141, Issue 1-2 , 2006 , Pages 247-254 ; 03769429 (ISSN) Ghaemmaghami, A ; Ghaemian, M ; Sharif University of Technology
    2006
    Abstract
    The specific fracture energy of dam concrete is a basic material characteristic needed for the prediction of concrete dam behavior. Data on fracture properties of dam concrete are quite limited to date. A series of tests was carried out based on the size effect due to a number of geometrically similar notched specimens of various sizes. Experimental tests include three-point bending tests. The specimens were of square cross section with a span to depth ratio of 2/5. Three different specimens with depth of 200, 400 and 800 mm were considered for the purpose of testing. Concrete mixtures are provided from the Caroon 3 dam project site using river gravel or commonly crushed stones from... 

    Tensile fracture behavior of heterogeneous materials based on fractal geometry

    , Article Theoretical and Applied Fracture Mechanics ; Volume 46, Issue 1 , 2006 , Pages 46-56 ; 01678442 (ISSN) Khezrzadeh, H ; Mofid, M ; Sharif University of Technology
    2006
    Abstract
    Many of heterogeneous structural materials, like concrete, have different behavior under tensile stresses in comparison to their behavior under compressive stresses. The aim of this paper is to interpret behavior of such materials subjected to tensile stresses, by using newly introduced concept of fractal geometry. In the first part of this paper, tensile behavior of granular composites has been studied by using fractal geometry. It is shown that the fractality of the cross section in this kind of composites can be used to interpret the size effect on tensile strength. In fact, this work is a modification with innovations on the previous studies on fractal based size effect. This hypothesis... 

    A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via the Sutton-Chen potential

    , Article Philosophical Magazine ; Volume 90, Issue 14 , 2010 , Pages 1893-1913 ; 14786435 (ISSN) Shodja, H. M ; Tehranchi, A ; Sharif University of Technology
    Abstract
    The usual continuum theories are inadequate in predicting the mechanical behavior of solids in the presence of small defects and stress concentrators; it is well known that such continuum methods are unable to detect the change of the size of the inhomogeneities and defects. For these reasons various augmented continuum theories and strain gradient theories have been proposed in the literature. The major difficulty in implication of these theories lies in the lack of information about the additional material constants which appear in such theories. For fcc metals, for the calculation of the associated characteristic lengths which arise in first strain gradient theory, an atomistic approach... 

    A dislocation-based model considering free surface theory through HPT process: Nano-structured Ni

    , Article Scientia Iranica ; Volume 17, Issue 1 F , 2010 , Pages 52-59 ; 10263098 (ISSN) Hosseini, E ; Kazeminezhad, M ; Sharif University of Technology
    2010
    Abstract
    In this study, a dislocation-based model is presented for investigating the evolution of micro structure and mechanical properties of thin films during a wide range of straining. The model is applied to the High Pressure Torsion (HPT) process of thin nickel disks that provides valuable information on the evolution of material parameters during deformation. The model considers a free surface theory for thin films and can explain the size effect phenomenon in agreement with previous reported trends in literature