Loading...
Search for: surface-energies
0.008 seconds
Total 28 records

    Molecular dynamic investigation of size-dependent surface energy of icosahedral copper nanoparticles at different temperature

    , Article Letters on Materials ; Volume 6, Issue 4 , 2016 , Pages 266-270 ; 22185046 (ISSN) Myasnichenko, V. S ; Razavi, M ; Outokesh, M ; Sdobnyakov, N. Y ; Starostenkov, M. D ; Sharif University of Technology
    Institute for Metals Superplasticity Problems of Russian Academy of Sciences  2016
    Abstract
    The study of the surface free energy (SFE) of metal at nanoscale is far from perfection and the obtained results are approach dependent. Despite the extensive investigations, there is still a lack of a complete model for the surface energy of metallic nanoparticles which could be able to consider effects of the particle size and shape. Most studies emphasize the size dependence of the melting characteristics, rather than considering the lattice deformation and the surface energy of nanoclusters. This research aimed at computation of SFE of copper nanoclusters depending on temperature over a wide range of sizes, containing 147 to 10179 atoms. We employed molecular dynamics simulation by using... 

    Wettability alteration of reservoir rocks to gas wetting condition: a comparative study

    , Article Canadian Journal of Chemical Engineering ; Volume 96, Issue 4 , April , 2018 , Pages 997-1004 ; 00084034 (ISSN) Erfani Gahrooei, H. R ; Ghazanfari, M. H ; Karimi Malekabadi, F ; Sharif University of Technology
    Wiley-Liss Inc  2018
    Abstract
    Productivity of gas condensate reservoirs reduces significantly due to the near wellbore condensate/water blockage phenomenon. A novel, permanent solution to alleviate this problem is near wellbore wettability alteration of reservoir rocks to preferentially gas wetting conditions; industrial chemical materials are good candidates for this purpose, because of their eco-friendly characteristics, economical price, and mass production. In this paper, a comparative study is conducted on two industrial fluorinated chemicals, MariSeal 800 and SurfaPore M. Static and dynamic contact angle measurements, spontaneous imbibition, and core flooding tests were conducted to investigate the effect of... 

    Simulation of Interaction between Aquifer and Surface Flow for Different Water Resources Utilization Scenarios (Case Study : Urmia Plain)

    , M.Sc. Thesis Sharif University of Technology Javadian, Mostafa (Author) ; Tajrishy, Masoud (Supervisor)
    Abstract
    The level of water at Lake Urmia has decreased dramatically in the last two decades. Lake-Urmia basin is one of the regions in which most of the consumption of water is based on groundwater resources. The annual withdrawal of groundwater in the Urmia Plain is about 468 MCM which is the highest rate of water extraction throughout the basin. In this research, interaction between surface and groundwater flow is simulated using MODFLOW and remote-sensing. METRIC algorithm is used for estimating the amount of recharge to groundwater. The model is calibrated in 24 months of 2008 and 2009. The results show that the main input to the aquifer is the return flow of agricultural lands and the main... 

    Investigation of Surface Segregation Phenomenon in Thin Films

    , Ph.D. Dissertation Sharif University of Technology Ahadian, Mohammad Mahdi (Author) ; Iraji zad, Azam (Supervisor)
    Abstract
    In this thesis, substrate surface segregation during thin film deposition and also during heat treatment has been investigated. For this purpose, surface segregation of copper substrate has been studied in some thin layer systems and the results revealed that surface segregation is possible in more unexpected situations. Complete studies of Ni/Cu system were investigated in UHV condition and direct measurement of surface energy as the main controlling parameter of surface segregation was done using contact angle measurements. The results indicated that in V2O5/Cu system, surface segregation of the Cu occurred up to oxide thickness of 200 nm. The Cu surface segregation in the electrodeposited... 

    Interaction of spherical colloidal particles in nematic media with degenerate planar anchoring

    , Article Soft Matter ; Volume 7, Issue 3 , Nov , 2011 , Pages 1107-1113 ; 1744683X (ISSN) Mozaffari, M. R ; Babadi, M ; Fukuda, J. I ; Ejtehadi, M. R ; Sharif University of Technology
    2011
    Abstract
    The interaction between two spherical colloidal particles with degenerate planar anchoring in a nematic media is studied by numerically minimizing the bulk Landau-de Gennes and surface energy using a finite element method. We find that the energy achieves its global minimum when the particles are in close contact and forming an angle = 28°± 2 with respect to the bulk nematic director, in agreement with the experiments. Although the quadrupolar structure of the director field is preserved in the majority of configurations, we show that for smaller orientation angles and at smaller inter-particle separations, the axial symmetry of the topological defect-pairs is continuously broken, resulting... 

    A combined first principles and analytical treatment for determination of the surface elastic constants: Application to Si(001) ideal and reconstructed surfaces

    , Article Philosophical Magazine Letters ; Volume 92, Issue 1 , Sep , 2012 , Pages 7-19 ; 09500839 (ISSN) Ojaghnezhad, F ; Shodja, H. M ; Sharif University of Technology
    2012
    Abstract
    Behavior of nanostructures, which are characterized by a large surface-to-volume ratio, is greatly influenced by their surface parameters, such as surface elastic moduli tensor. Accurate determination of the surface elastic constants by first principles is of particular interest. To this end, through consideration of the fundamental thermodynamic arguments for free solid surfaces, an analytical formulation for the change in specific Helmholtz surface free energy is developed. Relating this formulation to the corresponding energy calculated via first principles leads to the determination of the surface elastic moduli tensor. The surface mechanical properties, namely surface energy, surface... 

    Investigation of size effects on the physical properties of one-dimensional ising models in nanosystems

    , Article Molecular Physics ; Volume 109, Issue 3 , Feb , 2011 , Pages 385-395 ; 00268976 (ISSN) Taherkhani, F ; Daryaei, E ; Parsafar, G ; Fortunelli, A ; Sharif University of Technology
    2011
    Abstract
    Ising models in nanosystems are studied in the presence of a magnetic field. For a one-dimensional (1-D) array of spins interacting via nearest-neighbour and next-nearest-neighbour interactions we calculate the heat capacity, the surface energy, the finite-size free energy and the bulk free energy per site. The heat capacity versus temperature exhibits a common wide peak for systems of any size. A small peak also appears at lower temperatures for small arrays when the ratio of magnetic field spin interaction energy over the nearest-neighbour spin-spin interaction energy, f, is within 0 < F ≤ 0.10 . The peak becomes smaller for longer array and eventually vanishes for long arrays,... 

    Surface free energy of platinum nanoparticles at zero pressure: A molecular dynamic study

    , Article Solid State Communications ; Volume 150, Issue 5-6 , February , 2010 , Pages 254-257 ; 00381098 (ISSN) Akbarzadeh, H ; Abroshan, H ; Parsafar, G. A ; Sharif University of Technology
    2010
    Abstract
    Metallic nanoparticles are interesting because of their use in catalysis and sensors. The surface energy of the FCC platinum nanoparticles are investigated via molecular dynamics simulation using Quantum Sutton-Chen (QSC) potential. We have calculated the Gibbs free energy for the FCC platinum bulk and also for its nanoparticle. All calculations have been carried out at zero pressure. We have used the thermodynamic integration method to obtain the Gibbs free energy. The total Gibbs free energy is taken as the sum of its central bulk and its surface free energy. We have calculated the free energy of a platinum nanoparticle as a function of temperature  

    Determination of Elastic Surface Constants for fcc Materials and their Applications in Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Enzevaee, Camelia (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    This work focuses on developing a theoretical approach for the calculations of the surface elastic constants for (100) planes of fcc crystals. Using this method, the surface elastic constants, as well as the surface residual stress of the (100) planes of Al, Ag, Ni, Pt, and Cu fcc crystals, are evaluated using quantum calculations and VASP code. Surface effects are important in nanostructures and the considered metals are the most applicable ones in nanostructures especially in optic and electronic fields. For verification of the obtained values for surface elastic constants and residual stress, other surface parameters including the equilibrium lattice parameter, the energy per atom of the... 

    Groundwater Modelling with the Use of Remote Sensing Technology to Assess the Impact of Changes in Aquifer Conditions on Surface Flow (Case Study: Miandoab plain-Urmia Basin)

    , M.Sc. Thesis Sharif University of Technology Hamzekhani, Hamed (Author) ; Agha Mohammad Hossein Tajrishi, Massoud (Supervisor)
    Abstract
    Groundwater resources are considered as important resources of fresh water specifically in arid and semi-arid regions like Iran. Urmia Lake (UL) basin is one of these regions where groundwater resources play an important role in supplying water and due to inappropriate water resources management during the last two decades it has faced serious problems, like declination of water level in UL. Groundwater and surface water form an integrated system in the UL basin and have a mutual effect on each other. Hence, any improvement in exploitation of aquifers in that region could benefit UL water demand management. Appropriate water resources management in Miandoab plain which transfer almost 50... 

    Thermodynamically Consistent Phase Field Modeling of Interaction Between Crack Propagation and Phase Transformation

    , Ph.D. Dissertation Sharif University of Technology Jafarzadeh, Hossein (Author) ; Farrahi, Gholam Hossein (Supervisor) ; Javanbakht, Mahdi (Co-Supervisor)
    Abstract
    According to the widespread application of shape memory alloys, their study in the presence of cracks has received lots of attention in the last two decades. The phase transformation ahead of the crack tip may change the stress field and the fracture behavior, especially at the nanoscale. Thus, modeling this phenomenon helps to recognize the affecting factors on crack propagation and prediction of material behavior when cracks exist. In the first step of this thesis, a phase field approach for crack propagation was presented, first by considering fracture as phase transformation and then as bond breaking. According to the scaling-up strategy, the developed theory is applicable from the... 

    Surface energy effects on the yield strength of nanoporous materials containing nanoscale cylindrical voids

    , Article Mechanics of Materials ; Volume 42, Issue 9 , September , 2010 , Pages 852-862 ; 01676636 (ISSN) Goudarzi, T ; Avazmohammadi, R ; Naghdabadi, R ; Sharif University of Technology
    2010
    Abstract
    Surfaces and interfaces behave differently from their bulk counterparts especially when the dimensions approach small scales. The recent studies have shown that the surface/interface free energy (surface stress) plays an important role in the effective mechanical properties of solids with nanosized inhomogeneities. In this work, within a micromechanical framework, the effect of surface stress is taken into account to obtain a macroscopic yield function for nanoporous materials containing cylindrical nanovoids. Gurtin-Murdoch model of surface elasticity is incorporated in the generalized self-consistent method to obtain a closed-form expression for the transverse shear modulus of transversely... 

    Special vm link element for modeling of shear-flexural interaction in frames

    , Article Structural Design of Tall and Special Buildings ; Volume 18, Issue 2 , 2009 , Pages 119-135 ; 15417794 (ISSN) Kazemi, M. T ; Erfani, S ; Sharif University of Technology
    2009
    Abstract
    In the special zones of frame elements, which are used for seismic energy dissipation, inelastic interaction among the internal forces needs to be considered more precisely. This paper describes a special element called a VM link element for modeling the shear-flexural interaction in the inelastic zones of beam elements. The element may be used in the any inelastic location of frames subjected to the monotonic or cyclic loadings. The inelastic shear and flexural deformations are considered by using the multi-surfaces plasticity concept with dissimilar yield surfaces. A new kinematic hardening and new non-associated flow rules are introduced for definition of the plastic deformations and... 

    Phase field theory for fracture at large strains including surface stresses

    , Article International Journal of Engineering Science ; Volume 178 , 2022 ; 00207225 (ISSN) Jafarzadeh, H ; Farrahi, G. H ; Levitas, V. I ; Javanbakht, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Phase field theory for fracture is developed at large strains with an emphasis on a correct introduction of surface stresses at nanoscale. This is achieved by multiplying the cohesion and gradient energies by the local ratio of the crack surface areas in the deformed and undeformed configurations and with the gradient energy in terms of the gradient of the order parameter in the reference configuration. This results in an expression for the surface stresses which is consistent with the sharp surface approach. Namely, the structural part of the Cauchy surface stress represents an isotropic biaxial tension, with the magnitude of a force per unit length equal to the surface energy. The surface... 

    Study on Thermodynamics of Iodine Vapor Adsorption on Cu Nanoparticles by Different Computational Approach

    , M.Sc. Thesis Sharif University of Technology Razavi, Maliheh (Author) ; Outokesh, Mohammad (Supervisor)
    Abstract
    Iodine isotopes are among the most significant medical radioisotopes with a wide range of applications in therapy and diagnosis. The I-131 isotope is usually synthesized by irradiation of natural tellurium in atomic reactors. But there is an alternative route in which this isotopes is produced along with two other significant medical radioisotopes (i.e. Mo-99, Xe-131) by neutronic irradiation of uranium in the reactors. To separate iodine isotopes especially in the extraction process of fission fragments, it is necessary to be selective adsorption of iodine on a selective adsorbent. One of the most selective adsorbent for this application is copper. The aim of this study is to compare the... 

    Correlation between surface roughness and hydrophobicity of GLAD RF sputtered PTFE/W/Glass nanorod thin films

    , Article Vacuum ; Vol. 101, issue , March , 2014 , p. 279-282 Bayat, A ; Ebrahimi, M ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    In this research, we have used glancing angle deposition (GLAD) RF sputtering technique with various angular speeds ranging from 5 to 30 RPM to fabricate polytetrafluoroethylene (PTFE, Teflon) coated Tungsten on glass substrate for producing hydrophobic surface. According to scanning electron microscopy (SEM) observations, Tungsten nanorods were formed on the substrate with average diameter and length of about ∼50 nm and 300 nm, respectively. Hydrophobic property of W/Glass and PTFE/W/Glass systems was investigated by water contact angle measurements and we have found that the contact angle varied with the substrate angular speed. Maximum contact angle of 121 was measured for the... 

    A combined first principles and analytical determination of the modulus of cohesion, surface energy, and the additional constants in the second strain gradient elasticity

    , Article International Journal of Solids and Structures ; Volume 50, Issue 24 , 2013 , Pages 3967-3974 ; 00207683 (ISSN) Ojaghnezhad, F ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    Mindlin's (1965) second strain gradient theory due to its competency in capturing the effects of edges, corners, and surfaces is of particular interest. Formulation in this framework, in addition to the usual Lamé constants, requires the knowledge of sixteen additional materials constants. To date, there are no successful experimental techniques for measuring these material parameters which reflect the discrete nature of matter. The present work gives an accurate remedy for the atomistic calculations of these parameters by utilizing the first principles density functional theory (DFT) for the calculations of the atomic force constants combined with an analytical formulation. It will be shown... 

    Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids

    , Article Mechanics of Materials ; Volume 51 , 2012 , Pages 74-87 ; 01676636 (ISSN) Moshtaghin, A. F ; Naghdabadi, R ; Asghari, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Mechanical properties of a material near the surfaces and interfaces are different from those of the same material far from the surfaces/interfaces. The effect of this difference on the effective mechanical properties of heterogeneous materials becomes significant when the size of inhomogeneities is at the scale of nanometers. In this article, within a micromechanical framework, the effects of surface residual stress and surface elasticity are taken into account to obtain a macroscopic size-dependent yield function for nanoporous materials containing aligned cylindrical nanovoids. Based on the modified Hill's condition, the strains are decomposed into two parts, a part due to the external... 

    Investigation of magnetic field effect on surface and finite-site free energy in one-dimensional Ising model of nanosystems

    , Article Phase Transitions ; Volume 84, Issue 7 , Dec , 2011 , Pages 613-623 ; 01411594 (ISSN) Taherkhani, F ; Abroshan, H ; Akbarzadeh, H ; Parsafar, G ; Fortunelli, A ; Sharif University of Technology
    2011
    Abstract
    We investigate a one-dimensional (1-D) Ising model for finite-site systems. The finite-site free energy and the surface free energy are calculated via the transfer matrix method. We show that, at high magnetic fields, the surface free energy has an asymptotic limit. The absolute surface energy increases when the value of f (the ratio of magnetic field to nearest-neighbor interactions) increases, and for f ≥10 approaches a constant value. For the values of f ≥0.2, the finite-site free energy also increases, but slowly. The thermodynamic limit in which physical properties approach the bulk value is also explored  

    Wettability properties of PTFE/ZnO nanorods thin film exhibiting UV-resilient superhydrophobicity

    , Article Applied Surface Science ; Volume 341 , 2015 , Pages 92-99 ; 01694332 (ISSN) Bayat, A ; Ebrahimi, M ; Nourmohammadi, A ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this research, initially anodization process was used to fabricate ZnO nanorods on Zn substrate and then RF sputtering technique was applied to grow a thin layer of polytetrafluoroethylene (PTFE, Teflon) on the coated ZnO nanorods for producing a superhydrophobic surface. According to scanning electron microscopy (SEM) observations, ZnO nanorods were formed with average diameter and length of about ∼180 nm and 14 μm, respectively. Superhydrophilic property of ZnO nanorods and superhydrophobic property of PTFE/ZnO nanorods was investigated by water contact angle (WCA) measurements. It was found that the contact angle varied with the PTFE deposition time. The highest contact angle...