Loading...
Search for: water-pressures
0.012 seconds
Total 33 records

    Effect of direction of principal stress on cyclic behavior of dense sands

    , Article Geotechnical Special Publication ; 2014 , pp. 1317-1326 ; ISSN: 08950563 ; ISBN: 9780784413272 Jafarzadeh, F ; Zamanian, M ; Sharif University of Technology
    Abstract
    Soils have an anisotropic response, and changing the inclination and magnitude of the major principal stress will affect the collapse potential and brittleness and the shear strength and shear stiffness. A series of undrained cyclic tests on dense Babolsar and Toyoura sands with induced anisotropy were conducted using automatic hollow cylinder apparatus. Special attention was paid to the significant role of the principal stress direction (α). Results show that changes in α has significant effect on the type and the quantity of strains that directly affect the excess pore water pressure generation. Changes in α would change the deformation mode and soil stiffness. Stiffness reduction has led... 

    Evaluation of the effect of anisotropic consolidation and principle stress rotation on undrained behavior of silty sands

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1637-1653 ; 10263098 (ISSN) Keyhani, R ; Haeri, S. M ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    The dependence of undrained behavior of silty sand on initial state of stress and direction of principal stresses with respect to vertical (ff) is assessed under generalized loading paths using hollow cylinder apparatus. During applying shear load, value of intermediate principal stress parameter (b) is held constant and ff value is increased from zero to the aimed value and held constant. Specimens are consolidated, both, isotropically and anisotropically to evaluate the effect anisotropic consolidation on the behavior of these soils. The wet tamping method was selected to prepare specimen. Shear loading was carried out under strain-controlled condition to capture post-peak strain-softening... 

    A vacuum-refilled tensiometer for deep monitoring of in-situ pore water pressure

    , Article Scientia Iranica ; Volume 27, Issue 2A , 2021 , Pages 596-606 ; 10263098 (ISSN) Sadeghi, H ; Chiu, A. C. F ; Ng, C. W. W ; Jafarzadeh, F ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Real-time measurement of soil water pressure has been recognized as an essential part of investigating water ow in unsaturated soils. Tensiometry, amongst different measuring techniques, is a common method for direct evaluation of water pressure. However, the lower limit of measurable water pressure by a conventional tensiometer becomes even more limited by increasing its length in the vertical installation. This paper describes the development of a Vacuum-Refilled Tensiometer (VRT) for monitoring soil water pressure independent of installation depth. This is achieved by fixing the distance between pressure sensor and ceramic cup together with incorporating an ancillary vacuumre filling... 

    Numerical Modeling of Dynamic Compaction in Saturated Soils

    , M.Sc. Thesis Sharif University of Technology Dadizadeh, Saber (Author) ; Pak, Ali (Supervisor)
    Abstract
    Dynamic compaction (DC), as a method of deep improvement of soft soils, recently has been used increasingly worldwide. The method involves application of high energy by dropping heavy tamper on surface of the soil. The majority of previous studies on DC are concentrated on dry soils. Observations show that DC treatment in saturated soils is also effective, but little studies in this area are available. A fully coupled dynamic finite element code, PISA, has been used in order to clarify the ambiguities in process and to predict the strain/displacement filed in the ground, determine depth and degree of improvement, and also calculate the pore pressure variation during the process. Because the... 

    Effect of stress anisotropy on the pore water pressure generation of loose sand

    , Article 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, 9 November 2015 through 13 November 2015 ; 2015 , Pages 401-406 Jafarzadeh, F ; Zamanian, M ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2015
    Abstract
    It is well established that the main mechanism for the occurrence of liquefaction under seismic loading conditions is the generation of excess pore water pressure. The growth of the excess pore water pressure of saturated sand is dependent on several factors. Changing the inclination and magnitude of the major principal stress with respect to the depositional direction in most cases will increase the collapse potential and brittleness as well as reduce the shear strength and shear stiffness. An experimental program was carried out to study the variation of pore water pressure of cross-anisotropic deposits under anisotropic cyclic loading. A total of 30 undrained cyclic tests were performed... 

    Liquefaction Effects on (a) Individual and Group of Capless Piles and (b) Group of three Piles under Real and Artificial Earthquakes

    , M.Sc. Thesis Sharif University of Technology Sabouri, Marjan (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    In the areas where the soil beneath the foundation is made of loose to semi-consolidated sand or noncohesive silts, Buildings and bridges are usually built on the pile foundations. One important issue that must be considered in the design of piles in saturated sandy soils, is liquefaction potential of saturated sandy soil under earthquake loads. During the earthquake, saturated sandy soil faces the sudden loss of shear strength in other word it liquifies . Liquefied Soil acts like a viscous fluid. This behaviour considerably increases the soil deformation and consequently the widespread disruption of soil layers, causes large deformation and applies great amount of forces on the piles... 

    Evaluation of the Behaviorof Earth and Rockfill Dams during Construction and First Impounding using Instrumentation data and Numerical Modeling (Case Study: Dam Gavoshan)

    , M.Sc. Thesis Sharif University of Technology Rashidi, Mohammad (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Monitoring is of particular importance after impounding and during dam operation. In all large dams, by installation of the required instruments the pore pressure, soil mass pressure and displacement during construction, first impounding and operation are measured, then the performance of dam will be analyzed and evaluated. The aim of this study is to evaluate the performance of the "Gavoshan" dam, which has an important role on agriculture development and drinking water supply at west part of Country. To reach this, the values resulting from instruments have been implemented by FLAC software, using "Back Analysis" method. However, this assessment is complete when "back analysis" method is... 

    Evaluation of the Behavior of Gotvand Rockfill Dam During Construction and Initial Impoundment Using Instrumentation Data and Numerical Modeling

    , M.Sc. Thesis Sharif University of Technology Harif Bilondi, Zakie (Author) ; Jafarzadeh, Fardin (Supervisor)
    Abstract
    Stability control of Rockfill dams during construction, first impoundment and during operation is of great importance. Increase in pore water pressure during construction and reservoir filling of rockfill dams with clay core can initiate or help the progress of the hydraulic fracture. Considering initiation of high excessive pore pressures while construction as an important causes of dam failure, precise estimation and analysis of It's variation will be necessary and will increase safety factor of dam stability.Horizontal and especially vertical displacements happening during Dam construction and reservoir filling and arching phenomenon in clay core while construction are the other factors... 

    Effect of different parameters on steady state and monotonic liquefaction of gravelly soils

    , Article Geotechnical Special Publication, 17 March 2015 through 21 March 2015 ; Volume GSP 256 , March , 2015 , Pages 2034-2048 ; 08950563 (ISSN) ; 9780784479087 (ISBN) Payan, M ; Ayoubi, P ; Mirmo'Azen, S. M ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2015
    Abstract
    In the current research, the main concern is to verify the behavior of gravelly soils. To that matter, with taking use of CU triaxial tests and variations in parameters of interest, gradation, relative density, isotropic pressure and anisotropy of consolidation during the tests, the effects on the steady state condition and monotonic liquefaction of gravelly soils are investigated. The test results indicated that as the isotropic pressure increases, percentage increase of steady state strength resulting from the increase of relative density will decrease. Moreover, with the increase of anisotropy of consolidation, the effect of relative density on steady state strength and built-up pore... 

    Effects of membrane compliance on pore water pressure generation in gravelly sands under cyclic loading

    , Article Geotechnical Testing Journal ; Volume 33, Issue 5 , 2010 ; 01496115 (ISSN) Haeri, S. M ; Shakeri, M. R ; Sharif University of Technology
    Abstract
    The paper deals with an experimental study of the undrained cyclic behavior of a natural coarse sand and gravel deposit located in Tehran, a megacity situated on the continental side of the Alborz Mountain in Iran. Membrane compliance that plays a significant role in inhibiting redistribution of pore pressure and liquefaction in undrained cyclic triaxial tests performed on coarse granular soils is studied in this paper. Currently there is no or little satisfactory method for accounting for this phenomenon for gravelly soils, and thus the non-compliant cyclic loading resistanceof granular soils and the evaluation of the behavior of such material in natural and in situ state are not easily... 

    Computational investigation of graphene behavior under differential water pressure and possible mass transfer influences

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016, 4 January 2016 through 6 January 2016 ; Volume 2 , 2016 ; 9780791849668 (ISBN) Jafari, S ; Darbandi, M ; Saidi, M.S ; Heat Transfer Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    Because of its unique properties, graphene has attracted the attentions of many academic research groups and recently, the industry. One of the promising applications of the graphene is in micro/nano-sensors, e.g. using it as a pressure sensor. To use it in mechanical-based nano-sensors, it is very important to investigate the mechanical behavior of the nano-sized graphene sheet and its sensitivity to the medium changes applied on its faces. In this work, we use the molecular dynamics MD method and simulate the behavior of graphene sheet under differential water pressure influences. In this regard, a square straight monolayer graphene sheet is placed as a separator diaphragm between two... 

    Energy dissipation in saturated loose sand models in one and two-dimensional shaking table tests

    , Article 6th International Conference on Physical Modelling in Geotechnics, ICPMG'06, Hong Kong, 4 August 2006 through 6 August 2006 ; Volume 1-2 , 2006 , Pages 463-467 ; 041541587X (ISBN); 9780415415873 (ISBN) Jafarzadeh, F ; Hamidi, A ; Lotfiazad, F ; Sharif University of Technology
    2006
    Abstract
    In this paper the relation between dissipated energy and pore pressure is studied using 1 g shaking table test results. Toyoura sand is used for the physical models. Both one and two dimensional variable phase loadings are applied to the models. Shear work was calculated using accelerations and displacements and normalized to the mean effective stress. Pore water pressure was also normalized to the vertical effective stress. The results show that the pore pressure has a unique relationship to the shear work no matter whether the shaking is one or two dimensional. The results also show that the generated normalized pore pressure is independent of loading type and confinement. © 2006 Taylor &... 

    Pressure variation due to sudden rise of water head at water inlets

    , Article 31st IAHR Congress 2005: Water Engineering for the Future, Choices and Challenges, 11 September 2005 through 16 September 2005 ; 2005 , Pages 2797-2806 ; 8987898245 (ISBN); 9788987898247 (ISBN) Kabiri-Samani, A ; Borghei, S.M ; Saidi, M. H ; Byong-Ho J ; Sang I. L ; Won S. I ; Gye-Woon C ; Sharif University of Technology
    Korea Water Resources Association  2005
    Abstract
    An analytical/numerical model based on the assumption of rigid incompressible water column and compressible air bubble, is derived to simulate the pressure fluctuations, void fraction, air/water flow rate, water velocity in a closed conduit and water depth at upper reservoir due to formation of unstable slug flow. It is a comprehensive model which can generate different hydraulic situations of instability in a closed conduit based on hydraulic approach. The boundary conditions are the system of algebraic or/and simple differential equations. The steady solution of the governing differential equations is generally performed as the initial data. The frequency of pressure fluctuation and... 

    Numerical investigation of the effects of geometric and seismic parameters on liquefaction-induced lateral spreading

    , Article Soil Dynamics and Earthquake Engineering ; Volume 89 , 2016 , Pages 233-247 ; 02677261 (ISSN) Ghasemi Fare, O ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The lateral movement of a liquefiable soil layer on gentle slopes is the most visible and devastating type of liquefaction-induced ground failure. Recent earthquakes have shown that this phenomenon causes severe damages to coastal structures, pier of the bridges and life-lines by exerting large lateral forces on the structures. In this paper coupled dynamic field equations of extended Biot's theory with u-p formulation are used for simulating the phenomenon and the soil behavior is modeled by a critical state two-surface plasticity model for sands. Furthermore, in this study variation of permeability coefficient during liquefaction is taken into account. The permeability coefficient is... 

    A vacuum-re lled tensiometer for deep monitoring of in-situ pore water pressure

    , Article Scientia Iranica ; Volume 27, Issue 2 , 2021 , Pages 596-606 ; 10263098 (ISSN) Sadeghi, H ; Chiu, A. C. F ; Ng, C. W. W ; Jafarzadeh, F ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Real-time measurement of soil water pressure has been recognized as an essential part of investigating water ow in unsaturated soils. Tensiometry, amongst di erent measuring techniques, is a common method for direct evaluation of water pressure. However, the lower limit of measurable water pressure by a conventional tensiometer becomes even more limited by increasing its length in the vertical installation. This paper describes the development of a Vacuum-Re lled Tensiometer (VRT) for monitoring soil water pressure independent of installation depth. This is achieved by xing the distance between pressure sensor and ceramic cup together with incorporating an ancillary vacuum-re lling assembly... 

    Generation and dissipation of excess pore water pressure during CPTu in clayey soils: A numerical approach

    , Article Geotechnical and Geological Engineering ; Volume 39, Issue 5 , Febrauy , 2021 , Pages 3639-3653 ; 09603182 (ISSN) Golestani Dariani, A. A ; Ahmadi, M. M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Do all the clayey soils have the same behavior in terms of the generation and dissipation of excess pore water pressure during the piezocone penetration process? To find the answer, a coupled numerical simulation of CPTu in clays based on finite element analysis is presented in this paper. In this regard, the numerical modeling is verified by some laboratory tests on the samples with known initial conditions and stress states as well as field measurements of piezocone testing. Generation of excess pore water pressure during the penetration process is then investigated at different locations around the cone. This study encompasses piezocone penetration in both normally consolidated and... 

    Dynamic Analysis of Pile Foundations Embedded in Liquefiable Soils

    , M.Sc. Thesis Sharif University of Technology Rahmani, Amin (Author) ; Pak, Ali (Supervisor)
    Abstract
    The behavior of pile foundations under earthquake loading is an important issue that affects the performance of structures. Design procedures have been developed for evaluating pile behavior under earthquake loading; however, the application of these procedures to cases involving liquefiable ground is uncertain. The performance of piles in liquefied soil layers is much more complex than that of non-liquefying soil layers because not only the superstructure and the surrounding soil exert different dynamic loads on pile, but also the stiffness and shear strength of surrounding soil diminishes over time due to both non-linear behavior of soil and pore water pressure generation. In this... 

    Numerical Simulation of Ground Displacement Induced by Lateral Spreading Phenomenon

    , M.Sc. Thesis Sharif University of Technology Ghasemifare, Omid (Author) ; Pak, Ali (Supervisor)
    Abstract
    The lateral movement of a liquefiable layer on gently slopes is the most visible and devastating type of liquefaction-induced ground failure. Occurrence of liquefaction in sloping ground causes large deformations on ground surface, which may lead to several meters in some cases. Recent earthquakes have shown that this phenomenon causes severe damages to coastal structures, piers of bridges and life-lines, by exerting large lateral forces. In this research, a fully coupled two-dimensional dynamic analysis has been used to simulate the lateral spreading phenomenon and to evaluate the magnitude of deformations occurred in liquefiable soils. The critical state bounding surface elastic-plastic... 

    Physical Modeling of Effect of Liquefaction-Induced Lateral Spreading on Single Piles

    , M.Sc. Thesis Sharif University of Technology Torabi, Hooman (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Pile foundations suffered severe damages during the past earthquakes in all around the world. These damages were more severe in laterally spreading grounds and they mostly have been observed in gently sloping grounds and coastal areas. In these cases, Pile foundations not only are subjected to structures inertial loads and kinematic loads of liquefied soil but also lateral spreading intensifies damages. Thus, in the recent decade, several researches have been conducted to investigate the behavior of pile foundations in liquefiable and laterally spreading grounds, however, some uncertainties still remain in modeling of soil-pile interaction. In this study, the effects of liquefaction- induced... 

    Effects of Liquefaction on 2×2 and 3×3 Stiff and Flexible Pile Groups

    , M.Sc. Thesis Sharif University of Technology Goudarzi, Anahita (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Liquefaction has a profound effect on buildings, bridges, buried pipes and other engineering structures. This phenomenon can lead to the sliding of huge earth masses, submersion and bending of substantial structures, uplift of buried light structures and collapse of retaining walls. In recorded earthquakes, liquefaction has caused major damage to structures and deep foundations, proving that pile foundations are not designed to withstand at liquefaction condition. Considerable damages in pile foundations due to liquefaction in destructive earthquakes has called for extensive study and research concerning the behavior and response of piles under the influence of liquefaction, resulting in...