Loading...
Search for: wave-scattering
0.013 seconds
Total 36 records

    A generalized regression neural network to inverse scattering from cylindrical conducting targets

    , Article IEEE Antennas and Propagation Society Symposium 2004 Digest held in Conjunction with: USNC/URSI National Radio Science Meeting, Monterey, CA, 20 June 2004 through 25 June 2004 ; Volume 1 , 2004 , Pages 213-216 ; 15223965 (ISSN) Atabaki, A. H ; Barkeshli, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2004
    Abstract
    In this paper, we use the generalized regression neural network (GRNN) for the inverse scattering from perfectly conducting cylindrical targets illuminated by the transverse magnetic to z polarization  

    A hybrid multimode contour integral method for analysis of the H-plane waveguide discontinuities

    , Article Progress in Electromagnetics Research ; Volume 81 , 2008 , Pages 167-182 ; 10704698 (ISSN) Banai, A ; Hashemi, A ; Sharif University of Technology
    Electromagnetics Academy  2008
    Abstract
    A hybrid method is introduced for analysis of the H-plane waveguide discontinuities. It combines multimode contour integral and mode matching techniques. The process is based on dividing the circuit structure into key building blocks and finding the multimode scattering matrix of each block individually. The multimode scattering matrix of the whole structure can be found by cascading these blocks. Also contour integral method is developed for analysis of multi-media circuits. Therefore, it is possible to analyze H-plane waveguide filters with dielectric resonators using this method. The accuracy and run time of the purposed method is compared with those reported in literatures and/or Ansoft... 

    Electromagnetic Scattering Simulation Based on SPH Method Using GPU Parallel Processing

    , M.Sc. Thesis Sharif University of Technology Barkhordari, Alireza (Author) ; Shishegar, AmirAhmad (Supervisor)
    Abstract
    In this thesis, we propose and discuss efficient GPU implementation using CUDA for simulating electromagnetic scattering. We use SPH as a meshless particle method to electromagnetic transient simulation in time domain. Smoothed particle hydrodynamics (SPH) has been recently reformulated by the authors, and implemented in the so-called smoothed particle electromagnetics (SPEM) method. In SPEM two set of electric and magnetic staggered particles have to be generated. These particles are the points in which the field components are computed at each time step by using the information belonging to the neighboring ones.
    On the other hand, CUDA™ is a general purpose parallel computing platform... 

    Analysis of Electromagnetic Wave Scattering by a Periodic Array of Ferrite Disks

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Ali (Author) ; Rejaei Salmasi, Behzad (Supervisor) ; Memarian, Mohammad (Co-Supervisor)
    Abstract
    Due to the gyrotropic properties of ferrites, they have the ability to create nonreciprocal structures and have been used in microwave frequencies for a long time. Despite the use of these magnetic materials in ferrite devices, circulators, antennas, insulators, etc. The investigation of wave scattering by ferrite materials has been very limited and has only been limited to finding the radar cross-section. On the other hand, metasurfaes have been the subject of many studies in recent years in order to control propagation waves and create unusual scattering (reflection or propagation) from a surface.In this thesis, electromagnetic wave scattering by a grounded ferrite disk and the phenomena... 

    Single-site source localisation using scattering data

    , Article IET Radar, Sonar and Navigation ; Volume 12, Issue 2 , February , 2018 , Pages 250-259 ; 17518784 (ISSN) Samizadeh Nikoo, M ; Behnia, F ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    Passive localisation of non-cooperative targets through their electromagnetic emissions is an attractive issue. This localisation task can be carried out using multitude of receiver sites being linked together. This multiplicity, however, brings about difficulties in organising and coordinating the sites. One can even claim that the method is no longer passive considering the necessary communication links between the sites. On the other hand, single-site localisation methods basically overcome these difficulties eliminating the need for inter-site communications. In this study, a single-site localisation method is presented and analysed. This method is applicable to scenarios with a large... 

    The singular sources method for cracks

    , Article Mathematical Methods in the Applied Sciences ; Volume 30, Issue 10 , 2007 , Pages 1121-1134 ; 01704214 (ISSN) Fotouhi, M ; Sharif University of Technology
    2007
    Abstract
    The singular sources method is given to detect the shape of a thin infinitely cylindrical obstacle from a knowledge of the TM-polarized scattered electromagnetic field in large distance. The basic idea is based on the singular behaviour of the scattered field of the incident point source on the cross-section of the cylinder. We assume that the scatterer is a perfect conductor which is possibly coated by a material and investigate two models with different boundary conditions. Also we give a uniqueness proof for the shape reconstruction. Copyright © 2006 John Wiley & Sons, Ltd  

    Improving the quality of active millimeter wave standoff imaging by incorporating the cross-polarized scattering wave

    , Article Optics Express ; Volume 29, Issue 20 , 2021 , Pages 32603-32614 ; 10944087 (ISSN) Shojaeian, S ; Ahmadi Boroujeni, M ; Hajitabarmarznaki, S ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    In this paper, we study the feasibility of incorporating the cross-polarized scattered wave in active standoff millimeter-wave imaging in order to improve the edge detection and background suppression for metallic objects. By analyzing the scattering from a perfectly conducting (PEC) patch of a simple geometrical shape we show that the edge diffraction is the major source of cross-polarized scattering. A similar scattering behavior is also observed for a PEC patch placed on a dielectric medium. Hence, the cross-polarized scattered field conveys valuable information about the edges of the object. In addition, the cross-polarized scattering can be utilized to resolve the object from an... 

    Electromagnetic wave scattering analysis from 2-D periodic rough surfaces using complex images technique

    , Article IEEE Transactions on Geoscience and Remote Sensing ; Volume 53, Issue 2 , July , 2015 , Pages 862-868 ; 01962892 (ISSN) Barzegar Parizi, S ; Shishegar, A. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    The integral equation technique, in combination with the method of moments, is widely used for treating the electromagnetic scattering from periodic rough surfaces. This method, however, requires the computation of a kernel (a periodic Green's function) that consists of a slowly converging infinite series of conventional Green's functions. To accelerate the convergence of this series, different methods have been proposed in literature. In this paper, we use a complex image (CI) technique to find a closed-form expression for the periodic Green's function, which is then used to analyze the electromagnetic scattering from arbitrary periodic rough surfaces. The resulting CI Green's function... 

    Sound velocity in severely deformed aluminum alloys: AA1100 and AA2024

    , Article Applied Physics A: Materials Science and Processing ; Volume 126, Issue 4 , 2020 Yaghoubi, F ; Khani Moghanaki, S ; Kazeminezhad, M ; Sharif University of Technology
    Springer  2020
    Abstract
    The effects of severe plastic deformation on properties of AA1100 and AA2024 including the ultrasound velocity and the shear strength during multi-axial compression (MAC) are studied. Additionally, optical microscopy, scanning electron microscopy, and X-ray energy-dispersive spectroscopy are utilized. For both AA1100 and AA2024, an opposite trend is reported in the shear strength and the sound velocity versus deformation strain of MAC. At high strain range, AA1100 and AA2024 samples reach a plateau in the strength due to the occurrence of dynamic recovery. On the other hand, the sound velocity is shown to decrease 11% and 15% for AA1100 and AA2024, respectively. Furthermore, the... 

    The Inverse Electromagnetic Scattering Problem

    , M.Sc. Thesis Sharif University of Technology Sajedi, Masoumeh (Author) ; Hesaaraki, Mahmoud (Supervisor)

    Analysis and Simulation of Electromagnetic Waves Scattering from Human Body in Millimeter-Wave Band

    , M.Sc. Thesis Sharif University of Technology Mokhtari Koushyar, Farzad (Author) ; Shishegar, Amir Ahmad (Supervisor)
    Abstract
    Recent computational and technological progresses in millimeter-wave (MMW) band provide a high promising opportunity of various applications. The possibility of high rate data transferring is of strong interest for indoor wireless communications. Ability of high resolution and non-invasive imaging attract so much interest in medical and surveillance imaging and radar systems. In all of mentioned applications, human body plays an important role. Human body blockage (HBB) and human body shadowing (HBS) in wireless communications; concealed weapon detection (CWD) and detection of contraband objects on the surface of human body; and detection of human body presence and movement in buildings by... 

    In-Vivo Body Thermometry Using Electromagnetic Waves

    , M.Sc. Thesis Sharif University of Technology Shahsavari, Mohammad (Author) ; Shishegar, Amir Ahmad (Supervisor)
    Abstract
    The purpose of this study is to estimate the temperature distribution of the internal body organs using electromagnetic waves. When the external electromagnetic field propagates in biological tissues under a process like microwave hyperthermia, the temperature of the tissue at the field concentration area increases. Due to temperature and frequency dependence of the tissue dielectric, the tissue permittivity changes; thus, the electric field scattered by the tissue changes. Therefore, by measuring the field scattered from the object, dielectric changes of the tissue structure can be calculated. Since the biological tissues’ dielectric coefficient at frequencies lower than 2GHz is linear,... 

    Effective Methods for Improving the Quality of THz Spectroscopy

    , M.Sc. Thesis Sharif University of Technology Mirsalehi, Mitra (Author) ; Kavehvash, Zahra (Supervisor) ; Fardmanesh, Mehdi (Co-Supervisor)
    Abstract
    Terahertz (THz) spectroscopy has recently attracted great interest due to the special characteristics of THz waves, such as their capability of penetrating and passing through many non-polar materials, non-ionizing atoms and especially human tissues, and less scattering compared to optical waves and X rays. Also, polar molecules of some dielectric materials have vibrational or circular oscillations that create peaks in their spectral characteristics. This can be used to identify materials by spectroscopy. In this thesis, a simple THz spectroscopy system is introduced and modeled for detecting the C-4 material. First, a wideband Vivaldi antenna is designed and simulated for the frequency... 

    Design of Optimum Nanoantenna Arrays for Detection Applications

    , Ph.D. Dissertation Sharif University of Technology Armand, Mohammad Javad (Author) ; Rashidian, Bijan (Supervisor) ; Shahmansouri, Afsaneh (Co-Supervisor)
    Abstract
    The main goal of this thesis is introducing a method to design optimum nanoantenna arrays for detection applications. The proposed method is based on the multiple-scattering T-matrix in connection with the Ewald method. The formulation is systematic, quite general, easily traceable, and fast. Its high speed of analysis makes it well suited to design optimizations.In particular, we calculate multiple-scattering terms of the T-matrix formulation with the Ewald method. To the best of our knowledge no report on derivation of the T-matrix of a 3D (or even 2D) periodic array from the T-matrix of the isolated element, based on Ewald method has been reported before.Finally, a software has been... 

    Accurate numerical model for surface scattering, grain boundary scattering, and anomalous skin effect of copper wires

    , Article Proceedings - Winter Simulation Conference ; January , 2013 , Pages 209-210 ; 08917736 (ISSN) ; 9781467348416 (ISBN) Abbaspour, E ; Sarvari, R ; Akbarzadeh, A ; Rostami, M ; Sharif University of Technology
    2013
    Abstract
    In this paper we have studied both DC size effect and anomalous skin effect caused by surface and grain boundary scattering on the resistivity of Cu thin films by a Monte Carlo method. Contribution of each scattering mechanism and the interaction between them are analyzed separately. A simple and fast numerical recursive method is also introduced to guess the structure of electric field and distribution of current inside the thin film to evaluate the surface resistance instead of complicated analytical formulas  

    The scattering of P-waves by a piezoelectric particle with FGPM interfacial layers in a polymer matrix

    , Article International Journal of Solids and Structures ; Volume 47, Issue 18-19 , 2010 , Pages 2390-2397 ; 00207683 (ISSN) Kamali, M. T ; Shodja, H. M ; Sharif University of Technology
    2010
    Abstract
    Propagation of P-wave in an unbounded elastic polymer medium which contains a set of nested concentric spherical piezoelectric inhomogeneities is formulated. The polymer matrix is made of Epoxy and is isotropic; each phase of the inhomogeneity is made of a different piezoelectric material and is radially polarized and has spherical isotropy. Note that the individual phases are homogeneous, and all interfaces are perfectly bonded. The scattered displacement and electric potentials in the matrix are expressed in terms of spherical wave vector functions and Legendre functions, respectively. The transmitted displacement and electric potentials within each phase of the piezoelectric particle are... 

    Exploiting the ewald method for calculating the t-matrix of arbitrary periodic arrays

    , Article 5th International Conference on Millimeter-Wave and Terahertz Technologies, MMWaTT 2018, 18 December 2018 through 20 December 2018 ; Volume 2018-December , 2019 , Pages 62-65 ; 21570965 (ISSN); 9781538677179 (ISBN) Armand, M. J ; Rashidian, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this study a 3D robust, systematic, semi-analytical method to characterize electromagnetic scattering from periodic arrays of discrete scatterers is presented. The proposed method is based on the multiple-scattering T-matrix in connection with the Ewald method. The formulation is systematic, quite general, easily traceable, and fast. Its high speed of analysis makes it well suited to design optimizations. The formulation is well developed for obliquely incident plane waves, and can be extended to Gaussian beams by means of suitable plane wave decomposition. For validating the proposed method, an example of a scattering problem is solved, and the resulting scattering spectrum, and the... 

    Surface electromagnetic waves supported by nano conducting layers with inhomogeneities in the conductivity profile

    , Article Optical and Quantum Electronics ; Volume 40, Issue 1 , 2008 , Pages 23-40 ; 03068919 (ISSN) Sarrafi, P ; Mehrany, K ; Sharif University of Technology
    2008
    Abstract
    Conducting interfaces and nano conducting layers can support surface electromagnetic waves. Uniform charge layers of non-zero thickness and their asymptotic behavior toward conducting interfaces of infinitely small thicknesses, where the thin charge layer is modeled via a surface conductivity σ s , are already studied. Here, the possible effects of inhomogeneity in the conductivity profile of the thin conducting layers are investigated for the first time and a new approximate yet accurate enough analytical formulation for mode extraction in such structures is given. In order to rigorously analyze the structure and justify the proposed approximate formulation, the Galerkin's method with... 

    Shape reconstruction of three-dimensional conducting curved plates using physical optics, NURBS modeling, and genetic algorithm

    , Article IEEE Transactions on Antennas and Propagation ; Volume 54, Issue 9 , 2006 , Pages 2497-2507 ; 0018926X (ISSN) Saeedfar, A ; Barkeshli, K ; Sharif University of Technology
    2006
    Abstract
    A microwave inverse scattering problem including a method for shape reconstruction of three-dimensional electrically large conducting patches with simple geometries using genetic algorithm is presented. Unknown shape reconstruction algorithm starts from the knowledge of the simulated radar cross-section (RCS) data through back-scattering far-field computation using physical optics approximation. The forward problem involves the computation of the multiple-frequency and multiple-direction RCS of three-dimensional large conducting patches modeled by nonuniform rational B-spline (NURBS) surfaces. The control points of NURBS are the geometrical parameters, which are optimized for the shape... 

    Characterization of etched glass surfaces by wave scattering

    , Article Surface and Interface Analysis ; Volume 37, Issue 7 , 2005 , Pages 641-645 ; 01422421 (ISSN) Jafari, G. R ; Mahdavi, S. M ; Iraji Zad, A ; Kaghazchi, P ; Sharif University of Technology
    2005
    Abstract
    The roughness of glass surfaces after different stages of etching is investigated by reflection measurements with a spectrophotometer, light scattering, atomic force microscopy (AFM, on a small scale) and profilometry (on a large scale). The results suggest that there are three regimes during etching, according to their optical reflectivity and roughness. The first and the second regimes are studied by the Kirchhoff theory and the third one is studied by the optical geometric theory. Also, the roughness obtained by optical scattering is compared with the AFM results. Copyright © 2005 John Wiley & Sons, Ltd