Loading...

All-optical controlled switching in centrally coupled circular array of nonlinear optical fibers

Tofighi, S ; Sharif University of Technology | 2013

1221 Viewed
  1. Type of Document: Article
  2. DOI: 10.1364/AO.52.006131
  3. Publisher: Optical Society of American (OSA) , 2013
  4. Abstract:
  5. We show that, in a nonlinear centrally coupled circular array of evanescently coupled fibers, the coupling dynamics of a weak signal beam can be efficiently influenced by a high-power control beam that induces nonlinear defects. When the intense control beam is launched into the central core and one core in the periphery, then localized solitons are formed and cause the fibers with induced defects (defected fibers) to decouple from the other array elements. In the presence of a high-intensity control beam, the propagation of weak signal is restricted to the defected optical fibers. The weak signal periodically couples between the induced defects. This oscillatory behavior depends on the sign of the (Kerr-type) nonlinearity and the initial phase difference between the control fields injected to the central and one of the peripheral fibers. This all-optical network has the advantage of routing and switching the weak signal field in a controlled way by adjusting the parameters of intense control field
  6. Keywords:
  7. Defects ; Optical fibers ; Solitons ; All-Optical Networks ; Circular arrays ; Controlled switching ; Coupling dynamics ; Non-linear optical fibers ; Nonlinear defects ; Oscillatory behaviors ; Phase difference ; Fibers ; Glass fiber ; Computer aided design ; Equipment ; Equipment design ; Equipment failure ; Feedback system ; Nonlinear system ; Radiation scattering ; Signal processing ; Device failure analysis ; Devices ; Telecommunication ; Scattering, Radiation ; Signal Processing, Computer-Assisted ; Equipment Failure Analysis ; Feedback ; Light ; Nonlinear Dynamics ; Telecommunications
  8. Source: Applied Optics ; Volume 52, Issue 25 , Sep , 2013 , Pages 6131-6137 ; 1559128X (ISSN)
  9. URL: https://www.osapublishing.org/ao/abstract.cfm?uri=ao-52-25-6131