Loading...

An experimental investigation of fracture tilt angle effects on frequency and stability of liquid bridges in fractured porous media

Mashayekhizadeh, V ; Sharif University of Technology

995 Viewed
  1. Type of Document: Article
  2. DOI: 10.1080/10916466.2010.492370
  3. Abstract:
  4. Liquid bridges are believed to play an important role in improving the recovery of fractured reservoirs. However, little is known about the stability of liquid bridges in fractured media at the pore scale. In this work, a glass micromodel representing a stack of two blocks was used at different tilt angles to monitor the frequency and stability of liquid bridges formed during free-fall gravity drainage as a function of tilt angle. It was observed that by increasing the tilt angle, the liquid bridge frequency decreased but its stability increased. This resulted in higher ultimate recovery. In addition, it was found that during the first half of the experiments, the number of bridges was higher but their stability was lower than during the second half of the tests. Moreover, no more than one stable liquid bridge was observed at tilt angles above 20°, and the bridge cross-sectional area was gradually decreased as the stability was maintained. A sequence of bridges that were formed and broken one after the other results in a higher drainage rate than a single bridge with stability equal to the overall stability of the sequence
  5. Keywords:
  6. Fracture tilt angle ; Liquid bridge stability ; Block-to-block interaction ; Cross sectional area ; Drainage rate ; Experimental investigations ; Fractured media ; Fractured porous media ; Fractured reservoirs ; Gravity drainage ; Liquid bridge ; Liquid bridge frequency ; Pore scale ; Stable liquids ; Tilt angle ; Enhanced recovery ; Fracture ; Liquids
  7. Source: Petroleum Science and Technology ; Volume 30, Issue 8 , Mar , 2012 , Pages 807-816 ; 10916466 (ISSN)
  8. URL: http://www.tandfonline.com/doi/abs/10.1080/10916466.2010.492370