Loading...

New two-dimensional particle-scale model to simulate asphaltene deposition in wellbores and pipelines

Hassanpouryouzband, A ; Sharif University of Technology | 2018

516 Viewed
  1. Type of Document: Article
  2. DOI: 10.1021/acs.energyfuels.7b02714
  3. Publisher: American Chemical Society , 2018
  4. Abstract:
  5. A new two-dimensional dynamic model was developed to simulate asphaltene precipitation, aggregation, and deposition at isothermal and non-isothermal conditions. The perturbed-chain statistical associating fluid theory equation of state was used to model the asphaltene precipitation. Also, novel kinetic models were used to account for the aggregation and deposition of asphaltene particles. The effect of the aggregate size on the rate of aggregation and deposition was studied, and it was concluded that the rate of asphaltene deposition increases, while the concentration of nanoaggregates increases in the well column. The tendency of smaller aggregates to deposit on the surface could be explained as a result of the increase in the diffusion coefficient of asphaltene aggregates. The results obtained from the new model for the rate and amount of asphaltene deposition were compared to the experimental data reported in the literature. It was shown that the results of the new simulation were in good agreement with the experimental data. © 2017 American Chemical Society
  6. Keywords:
  7. Aggregates ; Deposition ; Equations of state ; Isotherms ; Aggregate size ; Asphaltene aggregates ; Asphaltene deposition ; Asphaltene precipitation ; Equation of state ; Kinetic models ; Non-isothermal condition ; Perturbed-chain statistical associating fluid theories ; Asphaltenes
  8. Source: Energy and Fuels ; Volume 32, Issue 3 , 2018 , Pages 2661-2672 ; 08870624 (ISSN)
  9. URL: https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.7b02714