Loading...

Microstructural, optical, and electrical characteristics of Ni/C doped BST thin films

Emadi, F ; Sharif University of Technology | 2019

655 Viewed
  1. Type of Document: Article
  2. DOI: 10.1016/j.ceramint.2018.12.007
  3. Publisher: Elsevier Ltd , 2019
  4. Abstract:
  5. In the present work the effect of simultaneous doping of carbon and nickel on the microstructural, optical, and electrical properties of barium strontium titanate (BST) is investigated. Thin films of BST were prepared by the sol-gel method in six different compositions ((Ba0.6Sr0.4)(NixCyTi1-x-y)O3): x = y = 0.00 (BST), x = 0.04 y = 0.00 (BST4N), x = 0.04 y = 0.01 (BST4N-1C), x = 0.04 y = 0.02 (BST4N-2C), x = 0.04 y = 0.03 (BST4N-3C), and x = y = 0.04 (BST4N-4C). Structural features and chemical bonds of the films were studied by TGA/DSC, XRD, FT-IR, and FE-SEM. The electrical and optical properties of the films were analysed by impedance spectroscopy and UV–VIS spectroscopy. The results show that addition of Ni and C leads to Ti4+-Ni2+ and Ti4+-C4+ replacements, respectively. These replacements lead to a gradual increase in the band gap energy; from 3.15 eV for BST to 3.44, 3.5, 3.66, 3.73 and 3.76 eV for BST4N, BST4N-1C, BST4N-2C, BST4N-3C, and BST4N-4C, respectively. In contrast, the dielectric loss decreases significantly from 0.055 for BST to 0.031, 0.033, 0.03, 0.022 and 0.01 for BST4N, BST4N-1C, BST4N-2C, BST4N-3C, and BST4N-4C, respectively. At the same time, the quality factor Qf (1/ tanδ) increases substantially from 15 for BST to 32, 30, 33, 44 and 87 for BST4N, BST4N-1C, BST4N-2C, BST4N-3C, and BST4N-4C, respectively. In contrast, the frequency dependence of the capacity decreases in comparison to un-doped BST. Among all films, the BST4N-4C had the highest figure of merit (FOM), least dielectric loss, and very low frequency-dependence, making it the best candidate for tuneable device applications
  6. Keywords:
  7. BaSrTiO3 ; Dielectric properties ; Optical properties ; Sol-gel ; Thin-film ; Barium strontium titanate ; Bond strength (chemical) ; Dielectric devices ; Dielectric losses ; Dielectric properties of solids ; Energy gap ; Semiconductor doping ; Sol-gel process ; Sol-gels ; Strontium titanates ; Thin films ; Electrical and optical properties ; Electrical characteristic ; Figure of merit (FOM) ; Frequency dependence ; Impedance spectroscopy ; Ion doping ; Simultaneous doping ; Optical films
  8. Source: Ceramics International ; Volume 45, Issue 5 , 2019 , Pages 5503-5510 ; 02728842 (ISSN)
  9. URL: https://www.sciencedirect.com/science/article/pii/S0272884218333741