Loading...
Search for: aeroelasticity
0.009 seconds
Total 85 records

    Fault Tolerant Control of Flexible Launch Vehicle Using Fractional-Order Controller

    , M.Sc. Thesis Sharif University of Technology Salehi Abari, Akbar (Author) ; Fathi Jegarkandi, Mohsen (Supervisor)
    Abstract
    In this research the attitude control of a flexible launch vehicle using fractional order proportional-integral-derivative controller in the presence of actuators failures is described. Other work done in this study is the investigation of on-line fault detection and diagnosis effects in the attitude control of flexible launch vehicle in the presence of actuator failures. Rigid-elastic equations of motion and assumed modes have been used to simulate dynamics of launch vehicle in the Simulink environment of MATLAB software using two elastic bending modes. The performance of fractional order controller has been compared with conventional proportional-integral-derivative and adaptive augmented... 

    Effects of Wind Shear Flow on the Aeroelastic Performance of a Large-Scale Wind Turbine with UBEM

    , M.Sc. Thesis Sharif University of Technology Hossein, Amir Hossein (Author) ; Ebrahimi, Abbas (Supervisor) ; Taeibi-Rahni, Mohamad (Supervisor) ; Rezaei, Mohamad Mahdi (Co-Supervisor)
    Abstract
    Study of the structural flexibility of large-scale wind turbine components on aeroelastic performance is important under the existence of critical atmospheric conditions. Prediction and control the critical deformations, identifying maximum local deformation and modeling the forces involved, are required. Aeroelasticity analysis is a suitable method for studying the coupling effects of wind turbine aerodynamics, dynamics and structures. This research has been done by modeling wind turbine components including blades, hub, nacelle and tower, taking into account aerodynamic couplings, dynamics and structures. Considering the large scale of reference wind turbine, nonlinear equations have added... 

    Aerodynamic Investigation of an Aeroelastic Flapping Wing and Optimum Design Method

    , Ph.D. Dissertation Sharif University of Technology Ebrahimi, Abbas (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    Flapping wing vehicles produce aerodynamic lift and thrust through the flapping motion of their wings. The dynamic performance of a flexible membrane flapping wing is experimentally investigated here. To investigate aeroelastic effects of flexible wings (specifically, wing’s twisting stiffness) on hovering and cruising aerodynamic performance, a flapping-wing system and an experimental setup were designed and built. This system measures the unsteady aerodynamic and inertial forces, power usage and angular speed of the flapping wing motion for different flapping frequencies, angles of attack, various wind tunnel velocities up to 12 m/s and for various wings with different chordwise... 

    Vibration Modeling and Analysis of a Wind Turbine Blade based on Third-Order Structural Nonliearities

    , Ph.D. Dissertation Sharif University of Technology Rezaei, Mohammad Mahdi (Author) ; Behzad, Mehdi (Supervisor) ; Haddadpour, Hassan (Co-Advisor) ; Moradi, Hamed (Co-Advisor)
    Abstract
    Aiming to improve the extraction performance of wind energy has led to the noticeable increase of the structural dimensions in the modern wind turbines. The larger blade with more flexibility experiences large structural deformation even under nominal operational loading, so the nonlinear modeling and analysis of these structures have become as important subject of the recent wind turbine researches. In this dissertation, the geometrical exact model of the rotating wind turbine blade under the effects of the tower tip's motion, and also the operational loading comprising the aerodynamic and gravitational loadings is presented. In this way, the geometrical exact beam formulation is developed... 

    6DOF Flight Dynamics Modeling of a Flexible Flapping wing using Unsteady Aerodynamics

    , Ph.D. Dissertation Sharif University of Technology Zare, Hadi (Author) ; Pourtakdoust, Hossein (Supervisor)
    Abstract
    A complete 6DOF flight dynamic model of an elastic flapping wing (EFW), integrated with unsteady aerodynamic theory is developed. In this respect, initially efficient high fidelity modules for EFW structural dynamics (SD) as well as unsteady aerodynamics loadings (UAL) to be coupled with its flight dynamics are prepared. A modal approach is followed to model structural dynamics of plain and 3D EFWs. This is in contrast with the Euler-Bernoulli beam theory that is mostly utilized for SD in the existing literature. In addition, due to the possibility of large wing deformations as well as the existence of non-linear displacement regime for realistic EFW flights, non-linear modal approaches such... 

    Aeroelastic Modeling of a Flexible Hybrid FMAV for 3D Controlled Flight

    , M.Sc. Thesis Sharif University of Technology Javaheri, Sajad (Author) ; Pourtakdoust, Hossein (Supervisor)
    Abstract
    Propulsive efficiency of flapping wings is optimized via a combination of flapping and elastic wing behavior. In this thesis, a complex complete model of flapping air vehicles (FAV) is developed in order to simulate the wing aeroelastic behavior. The resulting model is in the form of a complex set of partial differential equations whose solution is only numerically possible. Using the resulting simulation model, the different flapping behavior of the right and left wings can also be evaluated along with the resulting forces and moments that make the FAV flight realizable. One of the key flight conditions considered in many simulations is that of cruise flight. In order to have a... 

    Aeroelastic Modeling and Stability Analysis of a Flapping Wing with Unsteady Aerodynamic Approach

    , M.Sc. Thesis Sharif University of Technology Narimani, Mehrdad (Author) ; Pourtakdoost, Hossein (Supervisor)
    Abstract
    At this project we proceed to aero elastic modelling of a flapping wing using unsteady aerodynamic approach. Solving this model according to aerodynamic and structure coupling needs to simultaneously solve of aerodynamic and wing structure. Left side and right side of wing, each on divided into 18 elements. each element is interacting with sides element in terms of structural force and moment. In this modeling aerodynamic was modeling with unsteady aerodynamic approach (using modify theodersen function), also structure is flexible in to direction, bending and twisting. In the following it is proved that with change in flapping pattern better performance can be achieved. the effect of change... 

    Aeroelastic Modeling, Experimental Validation and Stability Analysis of a Flapping Wing Air Vehicle in Planar Flight

    , Ph.D. Dissertation Sharif University of Technology Karimian Aliabdi, Saeed (Author) ; Pourtakdoust, Hossein (Supervisor)
    Abstract
    In this research, aeroelastic model of an elastic flapping wing has been derived in order to be integrated with the flight dynamic model. The model developed in this research well describes the coupled and nonlinear behavior of the passive torsional deformations of the wing during flapping motion. Based on this obtained equations, a precise propulsion model proper for flapping wing vehicles has been introduced. The effect of geometric and mechanical properties of the wing is being accounted. In order to validation of the analytical model several FMAVs as well as an instrumented test stand for online measurements of forces, flapping angle and power consumption have been designed and built... 

    Design and Development of a Load Alleviation Control System for an Aeroelastic Wing Using Smart Materials

    , M.Sc. Thesis Sharif University of Technology Mohammadizadeh Zanianpour, Khalil (Author) ; Pourtakdoust, Hossein (Supervisor)
    Abstract
    As the aeronautical design evolves, the optimal solutions tend to employ slenderer and aeroelastic wings. These slender wings could help to increase the flight endurance, by decreasing the fuel consumption. However, as a wing becomes slenderer its structural stiffness decreases. The decrease in the stiffness highlights the structural vibrations and aeroelastic behavior in these wings. Atmospheric turbulences induce vibrations that can cause fatigue and structural failures. A possible solution to decrease these oscillations is to use active vibration control and flutter suppression. Conventional control surfaces on a wing can be used to implement the active vibration control. However, given... 

    Design and Construction of a Test Stand for Studying Experimentally Energy Harvesting from Galloping Effect

    , M.Sc. Thesis Sharif University of Technology Nikouyeh, Amir (Author) ; Ebrahimi, Abbas (Supervisor)
    Abstract
    In the last decade, harvesting energy from renewable phenomena in nature has attracted the attention of many researchers and turned it into a hot research focus. Wind flow around the world is an endless, repeatable and available source of energy. Therefore, harvesting wind energy disrupts the damaging cycle of fossil fuels to nature and fades over time. Therefore, in order to convert the mechanical green energy in the wind into electricity, mechanisms based on aeroelastic instabilities have attracted the attention of researchers. In this research, it is intended to design and build a test platform that is a suitable platform for research and testing on the aeroelastic instability of... 

    Dynamics, Stability, and Aero-servo-elasticity of Airships with Flexible Body and Fins

    , M.Sc. Thesis Sharif University of Technology Mirhashemi, Sajad (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    In this research, the dynamics, aero-elasticity, and control of an airship with a flexible body hull and fins are investigated. The flexible airship is modeled as a combination of several beams with specific boundary conditions. So that the dynamics and vibration of its body hull and fins can be taken into account regarding the aerodynamic, gravity, aerostatic, and control input forces. The governing equations of motion of the system are derived by using the velocity of an arbitrary point on each component and integration over the component and substituting them into the Euler-Lagrange equations in a body frame. Afterward, the added mass acting on the hull is calculated. Then, a perturbation... 

    A FEM-BEM Model for Investigation of Fuel SlushingEffect on the Supersonic Wing Aeroelasticity

    , M.Sc. Thesis Sharif University of Technology Zanjanizadeh Esfahani, Mohammad Javad (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    In the present work the stability analysis for the coupled aeroelasticity and fuel sloshing in supersonic wings is represented. The wing and store structure is modeled using the finite element method. The supersonic wing aerodynamic is modeled by the linear piston theory and store aerodynamic is modeled by the semi-stable slender body piston theory. Fuel sloshing in the store with desired geometry is modeled by the boundary element method. The coupled structure, aerodynamic and sloshing governing equations are drawn by using the Galerkin method and reduce order modeling teqnique for them and an effective numerical model was developed that is capable to analyze the stability for... 

    Development of the Hale Aircraft's Aeroelastic Model with Very Flexible Wings

    , Ph.D. Dissertation Sharif University of Technology Borhanpanah, Mohammad Reza (Author) ; Dehghani Firouzabadi, Roohallah (Supervisor)
    Abstract
    In this study, a nonlinear aeroelastic model for an aircraft with fully flexible wings is obtained. This aeroelastic model is based on system identification and is created using the beam model for the structure and the three-dimensional panel method for aerodynamic analysis. The model intended for the structure is a nonlinear beam with exact geometry with initial deformation and rigid motion. The model intended for aerodynamics is an unsteady three-dimensional panel method for the airplane’s body, wings, and tail. The desired aeroelasticity model is a reduced-order model based on system identification using the time-domain/frequency-domain aerodynamic response under forced vibrations in the... 

    Providing Optimization Tools to Design Aeroelastic Blades of Wind Turbines Made of Curved Fibers

    , M.Sc. Thesis Sharif University of Technology Feiz Arefi, Morteza (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    Nowadays Aeroelasticity is one of most important branch of aerospace science. The Aeroelastic analysis and get on aeroelastic safety margin, is one of the major steps that must be taken in flying crafts design. Diverse software have been developed for this purpose. Due to the increasing the demands of use of composite materials in aircraft structures, need to examine the effect of various parameters such as angles and stacking sequence on the aeroelastic instability (flutter and divergence) composite aircraft structures is determined. The analysis of wind turbines as a means of extracting energy from the wind and having a large diameter blades, causing the interference effects of aerodynamic... 

    Flutter Analysis Rotating Blade of a Turbo Machinery Made of Magneto Rheological Elastomer Core

    , M.Sc. Thesis Sharif University of Technology Rayyat Rokn-Abadi, Mohammad (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    This study considers the flutter analysis rotating blade of a turbo machinery made of magneto rheological elastomer core. The Smith theory is used for modeling the compressible subsonic flow. The classical Hamilton’s principle along with the assume mode method is used to set up the equations of motion. The validity of the derived formulation is confirmed through comparison with those obtained from the finite element software and the available results in the literature. Various parametric studies including the effects of applied magnetic field, core layer thicknesses, rotating speed, setting angle are examined for considered configuration of the rotating blade. The results show that the first... 

    Aeroelastic Analysis of Sandwich Plates with Viscoelastic Core and Functionally Graded Materials in Supersonic Flow

    , M.Sc. Thesis Sharif University of Technology Gholamalizadeh, Vajiheh (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    This study investigates the aeroelastic instability of functionally graded sandwich plate with viscoelastic core in supersonic airflow. The classical plate theory, first order shear deformation theory, Hamilton's principle and linear first-order piston theory have been employed to extract the governing equations of motion of the structure. The Ritz method and State space notation is used to solve the derived equations and identify the instability boundary of the sandwich plate with simply-supported boundary conditions. The derived are solved using a computer program which is validated and verified by comparing the results with available literature. Our attention is focused on analyzing the... 

    Vibration and Aeroelastic Stability Analysis of Sandwich Turbomachinery Blade with Magnetorheological Elastomer Core

    , Ph.D. Dissertation Sharif University of Technology Bornassi, Saeed (Author) ; Haddadpour, Hassan (Supervisor) ; Mohammad Navazi, Hossein (Co-Supervisor)
    Abstract
    This dissertaion deals with the vibration and aeroelasticity analysis of a turbomachinery cascade with Magnetorheological Elastomer (MRE) based sandwich blades. At first, bending vibration of the rotary blades equipped with an MRE core based on the three-layered sandwich beam theory have been studied in the flexural and edgewise directions. Further, the torsional vibration is investigated and the effects of different parameters such as the intensity of the magnetic field, rotating speed and the MRE layer thickness on the natural frequencies and loss factors of the system are studied. On the basis of the modeling obtained for the structural dynamics and based on the Whitehead's unsteady... 

    Aero-Hydro-Elastic Analysis of a Floating Beam in a Water Channel Subjected to Cross Wind

    , M.Sc. Thesis Sharif University of Technology Tavanbakhsh, Sadeq (Author) ; Dehghani Firouzabadi, Rouhollah (Supervisor)
    Abstract
    In static floating structures such as floating bridges and offshore runways that are in contact with the water surface from the floor and with the open air from the top, three types of interactions occur: the interaction of the structure with air, the interaction of the structure with water and Interaction of air with water. Due to the long length of such structures and approaching their natural frequencies to the standing wave frequencies (seiche frequencies), the analysis of the elastic behavior of the structure alone is not enough, but the structure-air-water interaction must be evaluated simultaneously in a system. Leading research addresses this issue and examines the behavior of an... 

    Aeroelastic Analysis of a Complete Aircraft Via State Space Modeling

    , M.Sc. Thesis Sharif University of Technology Ghobadi, Amir Hossein (Author) ; Keshavarz Haddad, Gholamreza (Supervisor)
    Abstract
    This dissertation presents aeroelastic stability analysis (flutter) pertinent to the complete flexible aircraft based on analytical dynamics, structural dynamics and aerodynamics. The unified formulation is based on fundamental principles and incorporates in a natural manner both rigid body motions of the aircraft as a whole and elastic deformations of the flexible components (fuselage, wing and empennage), as well as the aerodynamic, propulsion and gravity forces. The aircraft motion is described in terms of three translations and three rotations of a reference frame attached to the undeformed fuselage, and acting as aircraft body axes, and elastic displacements of each of the flexible... 

    Aeroelastic Analysis of Vehicle Under the Effect of Liquid Sloshing in Fuel Tank with Reduced Order Model

    , Ph.D. Dissertation Sharif University of Technology Noorian, Mohammad Ali (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    The present thesis aims at investigating the dynamic interaction of slosh and aeroelasticity in the fuel contained aero vehicles. The main approach in this research is to develop reduced order models for description of the coupled system. In this regard, boundary element method is used to develop slosh dynamic model. Axisymmetric boundary element method with non-symmetric boundary conditions is used to develop slosh dynamic model for axisymmetric containers. Zoning method is used to develop slosh dynamic model for the multi-baffled tanks and based on it, slosh equivalent mechanical model is developed for multi-baffled tanks. Finite element method along with modal technique is used to develop...