Loading...
Search for: alginates
0.009 seconds
Total 113 records

    Development of Modified Nanostructures for Fabrication of Polymer Nanocomposite Films for Controlled Atmosphere Food Packaging

    , Ph.D. Dissertation Sharif University of Technology Riahi, Zohreh (Author) ; Bagheri, Reza (Supervisor) ; Pircherghi, Gholamreza (Supervisor) ; Mohammadpour, Raheleh (Co-Supervisor)
    Abstract
    Active packaging is a novel approach that can ensure food safety by removing undesirable compounds such as Oxygen, ethylene, moisture, and microbial contamination from fresh produce's environment and reducing product loss by extending shelf life. Current research on active food packaging materials focuses on using biopolymers such as carbohydrates, proteins, and lipids as alternatives to non-degradable petroleum-based packaging materials. Active nanomaterials are commonly used to impart functionality to packaging materials. However, the lack of functionality limits their industrial application.Therefore, the main objective of this work was to fabricate bioactive nanocomposite films by... 

    Development of Magnetic Iron Oxide Nanoparticles Encapsulated in the Polymeric Matrix and its Applications in the Study of Radionuclides Uptake

    , M.Sc. Thesis Sharif University of Technology Esmailnia, Sahar (Author) ; Otukesh, Mohammad (Supervisor) ; Khanchi, Alireza (Supervisor)
    Abstract
    Nanoparticles have attracted the attention of many researchers because of the distinct physical and chemical properties. Besides the traditional applications in plastic reinforcement, fluid rheological additive, etc., the nanoparticles could be applied to many new fields and high-functional devices. Various chemical methods have been employed for the production of nanoparticles with narrow size distribution, such as co-precipitation, micro-emulsion, electrochemical synthesis, hydrothermal synthesis, sol–gel processing, flame spray pyrolysis, plasma chemical vapor deposition (CVD), hot-soap method and electrospray pyrolysis. But most of them have some problems so that only a few of them... 

    Design, Optimization and Fabrication of Multiplex Scaffold for Tissue Engineering Applications

    , M.Sc. Thesis Sharif University of Technology Bakhtiari, Mohammad Ali (Author) ; Shamloo, Amir (Supervisor) ; Hosseini, Vahid (Supervisor)
    Abstract
    Cartilage is a connective tissue, whose most important role in the body is to create a surface with a low friction coefficient in order to allow bones to slide on each other without direct contact to transfer loads. Articular cartilage is always under a harsh biomechanical environment and lacks blood, lymphatic and nerve vessels. As a result, it limits the capacity of this tissue to improve and restore itself. According to experimental efforts, cartilage cannot be regenerated spontaneously without the support of healthy subchondral bone. In recent years, the implantation of tissue engineering scaffolds has been considered as an effective strategy for the treatment of osteochondral damage.... 

    Fabrication and Enhancement of an Antibacterial Chitosancoated Allantoin-Loaded Skin Wound Dressing for Clinic Use

    , M.Sc. Thesis Sharif University of Technology Haki Zahi Margouk, Mohamamd (Author) ; Shamloo, Amir (Supervisor) ; Akbari, Javad (Supervisor)
    Abstract
    Skin as the largest organ of the body is constructed of three distinctive layers referred to as epidermis, dermis, and hypodermis. Epidermis is the outermost layer of the skin and acts as body’s first barrier against infectious agents and contains mostly sweat glands. Dermis is the mid-layer of the skin which makes up to 70% of the skin and plays a significant role in maintaining body’s metabolism and is home to a huge part of skin’s vascular network, nerve cells and hair follicles. Hypodermis on other hand, is the deepest layer of the skin and mainly acts as a bonding layer between upper skin layers and the soft tissue underneath. Although skin is proved to have a profound ability to... 

    Experimental and Numerical Study of The Production of Alginate Microgels and Cancer Spheroids by Droplet-Based Microfluidic

    , M.Sc. Thesis Sharif University of Technology Rezaeian, Masoud (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Significant advances in biotechnology have led to the emergence of a cost-effective way with less ethical issues to study disease, organ functions, tumors, and their response to drugs besides studying on animals. Microfluidic devices and organ on a chip (tumor on a chip) were introduced to remove those obstacles. Organ on a chip is a powerful tool for studying different types of tissues and simulating diseases, especially cancers, for biological and medical applications. Organ (tumor) on a chip is considered as a smaller scale of the real organ or tumor and it causes to the real-time study of tissues and their functions more accurately. In this study, to fabricate a droplet-based... 

    Adsorption Of Uranium from Phosphoric acid and Waste Water with Microcapsules Contains Selective Extractants

    , M.Sc. Thesis Sharif University of Technology Tayebi, Ahmad (Author) ; Ghofrani, Mohammad Bagher (Supervisor) ; Khanchi, Alireza (Supervisor) ; Outokesh, Mohammad (Co-Advisor)
    Abstract
    Uptake characteristics of alginate microcapsules containing D2EHPA/TOPO for adsorption of uranium from industrial effluent were examined using batch, stirred and column method .stable alginate microcapsules in dried form was developed by immobilizing of D2EHPA/TOPO in porous matrix of calcium alginate. Characteristics of microcapsules were carrying out by destructive chemical analysis, BET, SEM and TG .the synthesized microcapsules showed a good column properties and high selectivity and reusability. In addition, isotherm adsorption of calcium alginate and microcapsules were fitted with frendlich's equation .the microcapsules also demonstrated that, the uptake percentage was constantly high... 

    Charactrization of Oxidized Alginate- Gelatin Composite Hydrogel Reinforcement by Ti3C2Tx Mxene for Utilization in Biomedical Applications

    , M.Sc. Thesis Sharif University of Technology Moazeni, Shima (Author) ; Nemati, Ali (Supervisor) ; Mashayekhan, Shohreh (Co-Supervisor)
    Abstract
    Tissue engineering is a science that tries to create new tissues by using cells, growth factors and appropriate biological materials in order to repair damaged organs and replace parts lost due to various reasons. In this research, the effect of adding mxene sheets on the oxidized alginate-gelatin hydrogel scaffold was investigated. For this purpose, mxene nanosheets were first synthesized by Max phase chemical etching and its synthesis was confirmed by X-ray diffraction spectroscoy, field emission scanning electron microscope, X-ray energy diffraction spectroscopy, Fourier-transform infrared spectroscopy, UV-visible spectroscopy. Then, in order to prepare the scaffolds, different amounts of... 

    Synthesis and Characterization of Wound Dressings based on Alginate-Quince Seed Gum

    , M.Sc. Thesis Sharif University of Technology Abedini, Amir Abbas (Author) ; Pircheraghi, Gholamreza (Supervisor) ; Seyed Reihani, Morteza (Supervisor)
    Abstract
    Quince seed gum is a natural material that was used in Iranian traditional medicine for wound treatment. Alginate is a beneficial biomaterial that has been used in making commercial wound dressings for a long time. In this work, the preparation method and properties of films based on Alginate and Quince seed gum for drug delivery and wound healing have been investigated. According to the obtained results about crosslinking and plasticizing, the suitable condition of synthesis is 0.5% CaCl2 concentration, 2min soaking time, and 13% glycerol in crosslinking solution. In this crosslinking solution, a film with good mechanical properties (tensile strength: 13MPa, elongation: 27.3%, and Young’s... 

    Electrophoretic Deposition of Alginate-Bioglass-Nanodiamond Nanocomposites and Evolution of their Bioactivity

    , M.Sc. Thesis Sharif University of Technology Mansoorianfar, Mojtaba (Author) ; Simchi, Abdollreza (Supervisor)
    Abstract
    Recently, diamond nanoparticles have attracted interest for biomedical applications such as drug delivery, targeted cancer therapies, fabrication of tissue scaffolds and biosensors. In the present work, elecrophoretic deposition (EPD) of nanodiamond-bioactive glass-alginate nanocomposite was studied. In vitro bioactivity and biocompatibility of the nanocomposite were evaluated in simulated body fluid (SBF) and by MTT assay. The EPD process was performed under different conditions in order to obtain a uniform coating on the surface of 316L stainless steel substrate. The stability of the suspension was determined via optical sedimentation method and zeta potential analysis. It was found that... 

    Na Alginate/PVP/Hap nano-composites Hydrogels

    , M.Sc. Thesis Sharif University of Technology Kamali Moghadam, Zahra (Author) ; Frounchi, Masoud (Supervisor)
    Abstract
    In this research, we developed a drug release system of two biocompatible and biodegradable polymers and biocompatible ceramic nanoparticles. Hydrogels of sodium alginate (SA) were crosslinked using calcium chloride. The SA hydrogels were blended with polyvinyl pyrrolidone (PVP) and mixed with hydroxyapatite nanoparticles (HAP) to make hydrogel nanocomposites in the form of microbeads as drug carriers. Ciprofloxacin was selected as a model antibiotic drug for treatment of bone infection. It was found that SA and PVP form hydrogen bonds and are miscible at whole range of concentrations. Indeed, the SA/PVP blends may be considered as interpenetrating polymer networks (IPNs). HAP nanoparticles... 

    Scaffold Design and Fabrication for Retinal Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Abdi, Romina (Author) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    The retina, a photosensitive area in the central nervous system, is delicate and intricate. It is susceptible to degenerative disorders such as age-related macular degeneration (AMD), retinitis pigmentosa (RP), Stargardt disease (SD), and glaucoma. These diseases can lead to severe vision loss and ultimately irreversible blindness by causing destruction or dysfunction of different types of retinal cells. Unfortunately, there are no proven treatment strategies to cure or reverse these degenerative disorders. However, cell transplantation therapies may be an alternative to replace distorted cells and improve an individual's vision. Recent clinical outcomes show that transplanted cells in the... 

    Alginate/PVP/Pomegranate Seed Hydrogels as Bio-sorbents of Water Pollutants

    , M.Sc. Thesis Sharif University of Technology Hashemzadeh, Payam (Author) ; Frounchi, Masoud (Supervisor) ; Mollaabasi, Payam (Co-Supervisor)
    Abstract
    In the past decades, hydrogels have been used as an adsorbent with high potential to remove pollutants in water. Hydrogels are three-dimensional polymer networks that have the ability to absorb and store water and water-soluble compounds due to the presence of hydrophilic functional groups in their structure. Different particles with unique characteristics can be used to increase the efficiency of hydrogel absorption. Based on the type of pollutant, hydrogels are divided into three different forms, including particles, films and nanocomposites. In this research, the absorption effect of metal cations as well as the absorption kinetics of polyvinyl pyrrolidine-based hydrogels, sodium... 

    Design of Amniotic Membrane-based Hydrogel for Cardiac Tissue Engineering Application

    , M.Sc. Thesis Sharif University of Technology Gholami, Bahar (Author) ; Yaghmaei, Sohila (Supervisor) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Mammalian cardiac tissue lacks the ability to effectively self-regenerate following severe damage. The application of external therapeutic agents with strong mechanical properties is needed to restore its function. Even though conventional therapies have several challenges and limitations, injectable hydrogels, with minimally invasive, can significantly improve cardiac tissue regeneration. Extracellular matrices are the most appropriate biomaterials for synthesizing cardiac scaffolds. The human amniotic membrane obtained from the amniotic sac is a readily available, abundant, and inexpensive candidate that has been successfully utilized for the clinical treatment of cardiac diseases.... 

    Design of Scaffolds with Multi-scale Engineered Microchannels

    , M.Sc. Thesis Sharif University of Technology Mollajavadi, Mohammad Yasin (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Building complex and functional tissues and organs is very challenging. One of the challenges is building an efficient network of blood vessels that can be used to facilitate the transport of nutrients and oxygen to the host. In addition to using channels for oxygen supply, another solution is to use oxygen-carrying materials. In this study, in addition to designing and simulating scaffolds with multi-scale microchannels, calcium peroxide was used to release oxygen and eliminate hypoxia in the scaffold. Here alginate is used as the main material for scaffolding. In an attempt to build a scaffold using a bio-printer, pluronic acid was also used as a sacrificial material to create canals.... 

    Investigation on Insulin Release from Microcapsules Containing Beta Cell

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh, Zahra (Author) ; Alemzadeh, Iran (Supervisor) ; Vossoughi, Manouchehr (Supervisor)
    Abstract
    Type 1 diabetes, formerly known as insulin-dependent diabetes, may present at any age, but is the most common type of diabetes affecting children and adolescents. People with type 1 diabetes do not produce enough insulin. This type accounts for 5-10% of all types of diabetes. In this type of diabetes, beta cell destruction occurs in the pancreas. In type 1 diabetes, the pancreas does not secrete any insulin; insulin is a hormone that enables the body to convert glucose in food into energy. If sugar in the blood cannot enter the cells, it accumulates in the arteries and results in high blood sugar. High blood sugar over time can have irreversible effects on various parts of the body. Curcumin... 

    HAP/Agar Nanocarriers for Bone Anti-infection Drug

    , M.Sc. Thesis Sharif University of Technology Ghazagh, Parisa (Author) ; Frounchi, Masood (Supervisor)
    Abstract
    Successful treatment of bone infections is a major orthopedic challenge due to the physiological and anatomical features of bone. In this project, we prepared a drug delivery system with injectable and biodegradable polysaccharide agar containing alginate, polyvinyl alcohol and hydroxyapatite nanocarriers composite microspheres. Alginate and polyvinyl alcohol composite microspheres are crosslinked by calcium and freeze-thawing technique. Using the freeze thawing process for polyvinyl alcohol crosslinking, in addition to alginate crosslinking, improved hydrogel swelling behavior and enhanced drug loading and thus slowed drug release, drug loading increased with increasing PVA percentage from ... 

    Optimization of Insulin Releasing from Hydrogel Encapsulated Beta Cells

    , M.Sc. Thesis Sharif University of Technology Abbasi Jamaati, Parisa (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Co-Supervisor)
    Abstract
    Beta cells are responsible for secreting insulin to maintain normoglycaemia throughout the individual’s life. Type 1 Diabetes Mellitus (T1DM) is a metabolic disorder characterized by an autoimmune response that promotes the destruction of beta-cells within the pancreatic islets, resulting in lifelong inadequate insulin secretion. Encapsulating beta cells inside a semipermeable membrane to protect encapsulated cells from direct contact with the host immune system, is a new way to treat type 1 diabetes without the need for long-term immunosuppression. . In this case, the semipermeable membrane surrounds the cells and allows oxygen, nutrients, and cell products to penetrate bilaterally while... 

    Fabrication the Hydrogel Microfibers Using Bioprinter with Application in Cardiovascular Model

    , M.Sc. Thesis Sharif University of Technology Heidari, Faranak (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Cardiovascular disease (CVD) currently remains a considerable challenge for clinical treatments. CVDs account for N17.5 million deaths per year and will predictably increase to 23.6 million by 2030. The main purpose is to create human model systems to study the effect of disease mutations or drug treatment on the heart. In addition, engineered cardiac tissues are considered promising candidates to be transplanted to improve the function of diseased hearts. For engineered active tissues/organs, 3D bioprinting can fabricate complex tissue architecture with a spatiotemporal distribution of bioactive substances (cells, growth factors, and others) to better guide tissue regeneration. However,... 

    Production of drug Loaded Microgels Using Microfluidic

    , M.Sc. Thesis Sharif University of Technology Mehraji, Sima (Author) ; Saadatmand, Maryam (Supervisor) ; Eskandari, Mahnaz (Supervisor)
    Abstract
    Microfluidic systems have the ability to produce microgels with uniform size distribution and spherical shape due to the laminar flow and better control of the flow rates. Spherical microgels with same size can be used as high-potential carriers for drug release. An important challenge in the production of these drug-carrying microgels is the simultaneous process of drug loading into microgels and their production. The overall goal of this project was to produce drug-carrying microgels with uniform size distribution that show controlled drug release. To achieve this goal, various factors such as the type of polymer, the type of drug, the volume ratio of the polymer and the drug and the... 

    Co-Microencapsulation of Folic Acid and Iron

    , M.Sc. Thesis Sharif University of Technology Aali, Fatemeh (Author) ; Alemzadeh, Iran (Supervisor) ; Vossough, Manouchehr (Supervisor)
    Abstract
    This study aimed to prepare a type of microcapsule that microencapsulates folic acid and iron at the same time and protects these two substances against environmental and gastrointestinal conditions. Simultaneous release of these two nutrients has dual health properties and improves the efficiency of folic acid microencapsulation. In this study, biocomposites were formed containing alginate, pectin, and carboxymethylcellulose, and the microcapsules were synthesized by the ionization of calcium-alginate ions. Biocomposite optimization mixture with 13 experiments using experimental design software, optimal combination design method based on repopulation separator, restoring folic acid...