Loading...
Search for: animal-tissue
0.007 seconds
Total 53 records

    3D simulation of solutes concentration in urinary concentration mechanism in rat renal medulla

    , Article Mathematical Biosciences ; Volume 308 , 2019 , Pages 59-69 ; 00255564 (ISSN) Mahdavi, S. S ; Abdekhodaie, M. J ; Farhadi, F ; Shafiee, M. A ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    In this work, a mathematical model was developed to simulate the urinary concentration mechanism. A 3-D geometry was derived based on the detail physiological pictures of rat kidney. The approximate region of each tubule was obtained from the volume distribution of structures based on Walter Pfaller's monograph and Layton's region-based model. Mass and momentum balances were applied to solve for the change in solutes concentration and osmolality. The osmolality of short and long descending nephrons at the end of the outer medulla was obtained to be 530 mOsmol/kgH2O and 802 mOsmol/kgH2O, respectively, which were in acceptable agreement with experimental data. The fluid osmolality of the short... 

    Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres

    , Article International Journal of Pharmaceutics ; Volume 537, Issue 1-2 , 2018 , Pages 278-289 ; 03785173 (ISSN) Shamloo, A ; Sarmadi, M ; Aghababaie, Z ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Herein, a hybrid hydrogel/microsphere system is introduced for accelerated wound healing by sustained release of basic fibroblast growth factor (bFGF). The hydrogel is composed of a mixture of PVA, gelatin and chitosan. The double-emulsion-solvent-evaporation method was utilized to obtain microspheres composed of PCL, as the organic phase, and PVA, as the aqueous phase. Subsequently, various in-vitro and in-vivo assays were performed to characterize the system. BSA was used to optimize the release mechanism, and encapsulation efficiency in microspheres, where a combination of 3% (w/v) PCL and 1% (w/v) PVA was found to be the optimum microsphere sample. Incorporation of microspheres within... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S.H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S. H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    Allergic rhinitis impairs working memory in association with drop of hippocampal – Prefrontal coupling

    , Article Brain Research ; Volume 1758 , 2021 ; 00068993 (ISSN) Salimi, M ; Ghazvineh, S ; Nazari, M ; Dehdar, K ; Garousi, M ; Zare, M ; Tabasi, F ; Jamaati, H ; Salimi, A ; Barkley, V ; Mirnajafi Zadeh, J ; Raoufy, M. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Allergic rhinitis (AR) is a chronic inflammatory disease frequently associated with a deficit in learning and memory. Working memory is an important system for decision making and guidance, which depends on interactions between the ventral hippocampus (vHipp) and the prelimbic prefrontal cortex (plPFC). It is still unclear whether AR influences the activity and coupling of these brain areas, which consequently may impair working memory. The current study aimed to examine alterations of the vHipp-plPFC circuit in a rat model of AR. Our results show decreased working memory performance in AR animals, accompanied by a reduction of theta and gamma oscillations in plPFC. Also, AR reduces... 

    A microfabricated platform for the study of chondrogenesis under different compressive loads

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 78 , 2018 , Pages 404-413 ; 17516161 (ISSN) Kowsari Esfahan, R ; Jahanbakhsh, A ; Saidi, M. S ; Bonakdar, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Microfluidic devices are beneficial in miniaturizing and multiplexing various cellular assays in a single platform. Chondrogenesis is known to pertain to chemical, topographical, and mechanical cues in the microenvironment. Mechanical cues themselves have numerous parameters such as strain magnitude, frequency, and stimulation time. Effects of different strain magnitudes on the chondrogenic differentiation of adult stem cells have not been explored thoroughly. Here, a new multilayer microdevice is presented for the unidirectional compressive stimulation of cells in a three-dimensional cell culture. Numerical simulations were performed to evaluate and optimize the design. Results showed a... 

    A new model of pressure propagation in human tissue in HIFU application

    , Article Acta Medica Mediterranea ; Volume 31, Issue 7 , 2015 , Pages 1501-1505 ; 03936384 (ISSN) Hajian, S. R ; Abbaspour Tehrani Fard, A ; Pouladian, M ; Hemmasi, G. R ; Sharif University of Technology
    A. CARBONE Editore  2015
    Abstract
    This project is a new pressure model for propagating pressure inside one or several tissues at the time of treatment with high intensity focus ultrasound (HIFU). Pressure's changes are converted to heat's changes in tissue and this is done oscillatory. When the treatment is done in deeper tissues, obtained heat can affect surficial tissues. This pressure effect also can enter surficial tissues. Amount of pressure and heat possible injury can be controlled and reduced through this mechanical modelling. In this model we have used three layers and pressure also is obtained within these three layers and is investigated averagely. Obtained tissue in this mood is kidney tissue and it is tried to... 

    An extended algorithm for autonomous grasping of soft tissues during robotic surgery

    , Article International Journal of Medical Robotics and Computer Assisted Surgery ; Volume 16, Issue 5 , 2020 , Pages 1-15 Amirkhani, G ; Farahmand, F ; Yazdian, S. M ; Mirbagheri, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    Background: Autonomous grasping of soft tissues can facilitate the robotic surgery procedures. The previous attempts for implementing auto-grasping have been based on a simplistic representation of the actual surgery maneuvers. Method: A generalized three-zone grasp model was introduced to consider the effect of the pull force angulation on the grasp mode, that is, damage, slip, or safe grasp. Also, an extended auto-grasping algorithm was proposed in which the trigger force is automatically controlled against the pull force magnitude and direction, to achieve a safe and secure grasp. Results: The autonomous grasping experiments against a varying pull force in a phantom study indicated a good... 

    An improved synthesis and preliminary biodistribution study of a technetium-99m-labeled2-amino-2-deoxy(thioacetyl)-D-glucose complex ([ 99mTc]-TA-DG) as a tumor imaging agent

    , Article Iranian Journal of Nuclear Medicine ; Volume 15, Issue 28 , 2007 , Pages 43-48 ; 16812824 (ISSN) Johari Daha, F ; Sadeghzadeh, M ; Charkhlooie, G ; Haghir Ebrahimabadi, K ; Saeedi, M. R ; Sharif University of Technology
    2007
    Abstract
    Introduction: This report describes the synthesis of 2-Amino-2-deoxy(S- benzoylthioacetyl)-D-glucose (S-Bz-TA-DG), radiolabeled with [ 99mTc(CO)3(OH2)3]+ complex with a procedure including deprotection of the benzoyl group, characterization by HPLC using a C18 reverse phase column and preliminary biodistribution study in normal mice. Methods: [99mTc(CO) 3(H2O)3]+ complex was used to label TA-DG with 99mTc. This complex was prepared using up to 46 mCi of Na99mTcO4 in 1mL saline. The radiochemical purity (>95%) was determined by TLC in normal saline solution as the mobile phase. Radio-HPLC analysis of [99mTc]-(TA-DG) at pH=9.5-10, revealed that labeling with 99mTc resulted in the formation of... 

    A novel formulation of simvastatin nanoemulsion gel for infected wound therapy: In vitro and in vivo assessment

    , Article Journal of Drug Delivery Science and Technology ; Volume 72 , 2022 ; 17732247 (ISSN) Amoozegar, H ; Ghaffari, A ; Keramati, M ; Ahmadi, S ; Dizaji, S ; Moayer, F ; Akbarzadeh, I ; Abazari, M ; razzaghi abyaneh, M ; Bakhshandeh, H ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    Simvastatin, a well-known antihyperlipidemic drug, has antibacterial activity against a broad range of bacteria, especially Staphylococcus aureus. In present study, a nanoemulsion gel-based formulation containing Simvastatin was developed for infected wound therapy. Therefore, different formulations of Simvastatin nanoemulsion were prepared. Based on droplet size, polydispersity index and zeta potential, the best nanoemulsion formulation containing Simvastatin was selected for development of nanoemulsion gel formulation of drug using carbomer 934 as gelling agent. Thermodynamic stability of Simvastatin nanoemulsion was assessed at different conditions. The in vitro antibacterial activity... 

    Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems

    , Article Journal of Biomedical Science ; Vol. 21, issue. 1 , July , 2014 ; ISSN: 10217770 Tahamtan, A ; Ghaemi, A ; Gorji, A ; Kalhor, H. R ; Sajadian, A ; Tabarraei, A ; Moradi, A ; Atyabi, F ; Kelishadi, M ; Sharif University of Technology
    Abstract
    Cervical cancer is the second-most-common cause of malignancies in women worldwide, and the oncogenic activity of the human papilloma virus types (HPV) E7 protein has a crucial role in anogenital tumors. In this study, we have designed a therapeutic vaccine based on chitosan nanodelivery systems to deliver HPV-16 E7 DNA vaccine, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer. We have developed a Nano-chitosan (NCS) as a carrier system for intramuscular administration using a recombinant DNA vaccine expressing HPV-16 E7 (NCS-DNA E7 vaccine). NCS were characterized in vitro for their gene transfection ability. Results: The transfection of CS-pEGFP... 

    A simple and efficient total synthesis of (±)-danshexinkun A, a bioactive diterpenoid from Salvia miltiorrhiza

    , Article Tetrahedron Letters ; Volume 51, Issue 3 , 2010 , Pages 540-542 ; 00404039 (ISSN) Matloubi Moghaddam, F ; Moridi Farimani, M ; Sharif University of Technology
    Abstract
    An efficient 12-step route for the synthesis of the diterpenoid quinone (±)-danshexinkun A in 23% overall yield from the corresponding highly substituted stilbene using a photocyclization strategy is described  

    Bioinspired nanofiber scaffold for differentiating bone marrow-derived neural stem cells to oligodendrocyte-like cells: Design, fabrication, and characterization

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3903-3920 Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Khoramgah, M. S ; Rahimi Movaghar, V ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Background: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue acces-sibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. Purpose: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. Materials and Methods: In order to achieve a sustained release of T3, this factor was... 

    Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading – Ex-vivo and In-Silico investigation

    , Article Journal of Biomechanics ; Volume 70 , March , 2018 , Pages 26-32 ; 00219290 (ISSN) Nikkhoo, M ; Wang, J. L ; Parnianpour, M ; El-Rich, M ; Khalaf, K ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Understanding the effect of impact loading on the mechanical response of the intervertebral disc (IVD) is valuable for investigating injury mechanisms and devising effective therapeutic modalities. This study used 24 porcine thoracic motion segments to characterize the mechanical response of intact (N = 8), degenerated (Trypsin-denatured, N = 8), and repaired (Genepin-treated, N = 8) IVDs subject to impact loading. A meta-model analysis of poroelastic finite element simulations was used in combination with ex-vivo creep and impact tests to extract the material properties. Forward analyses using updated specimen-specific FE models were performed to evaluate the effect of impact duration. The... 

    Can the body slope of interference screw affect initial stability of reconstructed anterior cruciate ligament?: An in-vitro investigation

    , Article BMC Musculoskeletal Disorders ; Volume 22, Issue 1 , 2021 ; 14712474 (ISSN) Daneshvarhashjin, N ; Chizari, M ; Mortazavi, J ; Rouhi, G ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Superior biomechanical performance of tapered interference screws, compared with non-tapered screws, with reference to the anterior cruciate ligament (ACL) reconstruction process, has been reported in the literature. However, the effect of tapered interference screw’s body slope on the initial stability of ACL is poorly understood. Thus, the main goal of this study was to investigate the effect of the interference screw’s body slope on the initial stability of the reconstructed ACL. Methods: Based on the best screw-bone tunnel diameter ratios in non-tapered screws, two different tapered interference screws were designed and fabricated. The diameters of both screws were equal to... 

    Cold atmospheric plasma modification and electrical conductivity induction in gelatin/polyvinylidene fluoride nanofibers for neural tissue engineering

    , Article Artificial Organs ; Volume 46, Issue 8 , 2022 , Pages 1504-1521 ; 0160564X (ISSN) Sahrayi, H ; Hosseini, E ; Ramazani Saadatabadi, A ; Atyabi, S ; Bakhshandeh, H ; Mohamadali, M ; Aidun, A ; Farasati Far, B ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Background: This research follows some investigations through neural tissue engineering, including fabrication, surface treatment, and evaluation of novel self-stimuli conductive biocompatible and degradable nanocomposite scaffolds. Methods: Gelatin as a biobased material and polyvinylidene fluoride (PVDF) as a mechanical, electrical, and piezoelectric improvement agent were co-electrospun. In addition, polyaniline/graphene (PAG) nanoparticles were synthesized and added to gelatin solutions in different percentages to induce electrical conductivity. After obtaining optimum PAG percentage, cold atmospheric plasma (CAP) treatment was applied over the best samples by different plasma variable... 

    Combinational therapy of lithium and human neural stem cells in rat spinal cord contusion model

    , Article Journal of Cellular Physiology ; Volume 234, Issue 11 , 2019 , Pages 20742-20754 ; 00219541 (ISSN) Mohammadshirazi, A ; Sadrosadat, H ; Jaberi, R ; Zareikheirabadi, M ; Mirsadeghi, S ; Naghdabadi, Z ; Ghaneezabadi, M ; Fardmanesh, M ; Baharvand, H ; Kiani, S ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    A large number of treatment approaches have been used for spinal cord injury improvement, a medically incurable disorder, and subsequently stem cell transplantation appears to be a promising strategy. The main objective of this study is to ascertain whether combinational therapy of human neural stem cells (hNSCs) together with lithium chloride improves cell survival, proliferation, and differentiation in a rat spinal contusion model, or not. Contusive spinal cord injury was implemented on Wistar male rats. Experimental groups comprised of: control, hNSCs transplanted, lithium chloride (Li), and hNSCs and lithium chloride (hNSCs + Li). In every experimental group, locomotor activity score and... 

    Comparison of strengths of five internal fixation methods used after bilateral sagittal split ramus osteotomy: An in vitro study

    , Article Dental Research Journal ; Volume 17, Issue 4 , 2020 , Pages 258-265 Sarkarat, F ; Ahmady, A ; Farahmand, F ; Fateh, A ; Kahali, R ; Nourani, A ; Rakhshan, V ; Sharif University of Technology
    Wolters Kluwer Medknow Publications  2020
    Abstract
    Results on the strength and displacement of internal fixation methods for bilateral sagittal split ramus osteotomy are controversial, and some designs have not been adequately studied. Therefore, this study was conducted to compare techniques using bicortical or monocortical screws. Materials and Methods: In this in vitro study, 35 sheep hemi-mandibles were randomly assigned to five groups of seven each: fixation using (1) a 13 × 2 screw, (2) two 13 × 2 screws (arranged vertically), (3) three 13 × 2 screws, (4) 1 plate with 4 holes and four monocortical screws, and (5) a Y-shaped plate and five monocortical screws. Specimens underwent vertical forces until failure. Breakage forces and... 

    Comparison of transplantation of bone marrow stromal cells (BMSC) and stem cell mobilization by granulocyte colony stimulating factor after traumatic brain injury in rat

    , Article Iranian Biomedical Journal ; Volume 14, Issue 4 , Oct , 2010 , Pages 142-149 ; 1028852X (ISSN) Bakhtiary, M ; Marzban, M ; Mehdizadeh, M ; Joghataei, M. T ; Khoei, S ; Pirhajati Mahabadi, V ; Laribi, B ; Tondar, M ; Moshkforoush, A ; Sharif University of Technology
    2010
    Abstract
    Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats were injured with controlled cortical impact device and divided randomly into four groups. The treatment groups were injected with 2 × 106 intravenous bone marrow stromal stem cell (n = 10) and also with subcutaneous G-CSF (n = 10) and sham-operation group (n = 10) received PBS and "bromodeoxyuridine... 

    Construction of scaffolds composed of acellular cardiac extracellular matrix for myocardial tissue engineering

    , Article Biologicals ; Volume 53 , 2018 , Pages 10-18 ; 10451056 (ISSN) Esmaeili Pourfarhangi, K ; Mashayekhan, S ; Ghanbari Asl, S ; Hajebrahimi, Z ; Sharif University of Technology
    Academic Press  2018
    Abstract
    High rates of mortality and morbidity stemming from cardiovascular diseases unveil extreme limitations in current therapies despite enormous advances in medical and pharmaceutical sciences. Following myocardial infarction (MI), parts of myocardium undergo irreversible remodeling and is substituted by a scar tissue which eventually leads to heart failure (HF). To address this issue, cardiac patches have been utilized to initiate myocardial regeneration. In this study, a porous cardiac patch is fabricated using a mixture of decellularized myocardium extracellular matrix (ECM) and chitosan (CS). Results of rheological measurements, SEM, biodegradation test, and MTT assay showed that the...