Loading...
Search for: atherosclerosis
0.005 seconds
Total 28 records

    A multiscale approach for determining the morphology of endothelial cells at a coronary artery

    , Article International Journal for Numerical Methods in Biomedical Engineering ; Volume 33, Issue 12 , 2017 ; 20407939 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    The morphology of endothelial cells (ECs) may be an indication for determining atheroprone sites. Until now, there has been no clinical imaging technique to visualize the morphology of ECs in the arteries. The present study introduces a computational technique for determining the morphology of ECs. This technique is a multiscale simulation consisting of the artery scale and the cell scale. The artery scale is a fluid-structure interaction simulation. The input for the artery scale is the geometry of the coronary artery, that is, the dynamic curvature of the artery due to the cardiac motion, blood flow, blood pressure, heart rate, and the mechanical properties of the blood and the arterial... 

    A simple model of intimal thickening-effects of hypertension

    , Article 2012 19th Iranian Conference of Biomedical Engineering, ICBME 2012 ; 2012 , Pages 276-281 ; 9781467331302 (ISBN) Mirbagheri, S. A ; Saidi, M. S ; Firoozabadi, D ; Sharif University of Technology
    2012
    Abstract
    A vast amount of death in the world has been attributed to atherosclerosis. This disease causes plaque formation and finally lack of blood supply to an organ. The prominent aim of this study is proposing an accurate and simple model to investigate the process of arterial wall thickening. In order to investigate LDL (low density lipoprotein) accumulation in arterial wall which is considered the first stage of atherosclerosis, a four layer model for arterial wall consisting of endothelium, intima, IEL and media is presented. All layers are treated as homogenous porous media. The four-layer arterial wall model is the most powerful and reliable tool for modeling LDL transport within arterial... 

    Atheroprone sites of coronary artery bifurcation: Effect of heart motion on hemodynamics-dependent monocytes deposition

    , Article Computers in Biology and Medicine ; Volume 133 , 2021 ; 00104825 (ISSN) Biglarian, M ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Atherosclerosis as a common cardiovascular disease is a result of both adverse hemodynamics conditions and monocyte deposition within coronary arteries. It is known that the adhesion of monocytes on the arterial wall and their interaction with the vascular surface are one of the main parameters in the initiation and progression of atherosclerosis. In this work, hemodynamic parameters and monocyte deposition have been investigated in a 3D computational model of the Left Anterior Descending coronary artery (LAD) and its first diagonal branch (D1) under the heart motion. A one-way Lagrangian approach is performed to trace the monocyte particles under different blood flow regimes and heart motion... 

    Computational investigation of stenosis in curvature of coronary artery within both dynamic and static models

    , Article Computer Methods and Programs in Biomedicine ; Volume 185 , 2020 Biglarian, M ; Momeni Larimi, M ; Hassanzadeh Afrouzi, H ; Moshfegh, A ; Toghraie, D ; Javadzadegan, A ; Rostami, S ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and Objective: Blood flow variation during cardiac cycle is the main mechanism of atherosclerotic development which is dependent on. Methods: The present work mainly tends to investigate stenosis effect in dynamic curvature of coronary artery. This paper presents numerical investigations on wall shear stress profiles in three-dimensional pulsatile flow through curved stenotic coronary arteries for both static and dynamic model. In order to do so, three-dimensional models related to the curved arteries with two degrees of stenosis (30% and 50%). Results: Lower amount of wall shear stress is found near the inner wall of artery distal to the plaque region (stenosis) and in both... 

    Effects of hypertension on Intima-Media Thickness (IMT); application to a human carotid artery

    , Article Scientia Iranica ; Volume 23, Issue 4 , 2016 , Pages 1731-1740 ; 10263098 (ISSN) Mirbagheri, S. A ; Saidi, M. S ; Sohrabi, S ; Firoozabadi, B ; Banazadeh, M. H ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    A vast number of deaths in the world have been attributed to atherosclerosis. The prominent aim of this study is proposing an accurate and simple model to investigate the process of arterial wall thickening. In order to investigate LDL (Low Density Lipoprotein) accumulation in arterial wall, a four layer model for arterial wall consisting of endothelium, intima, IEL, and media is presented. All layers are treated as homogenous porous media. This model has been solved both numerically and analytically. Obtained accumulated LDL in the intima is used to calculate oxidized LDL flux. Also, the presented model and clinical data are used to prepare the growth model for arterial wall. Furthermore,... 

    Endothelial cells morphology in response to combined wss and biaxial cs: introduction of effective strain ratio

    , Article Cellular and Molecular Bioengineering ; Volume 13, Issue 6 , 2020 , Pages 647-657 Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Springer  2020
    Abstract
    Introduction: Endothelial cells (ECs) morphology strongly depends on the imposed mechanical stimuli. These mechanical stimuli include wall shear stress (WSS) and biaxial cyclic stretches (CS). Under combined loading, the effect of CS is not as simple as pure CS. The present study investigates the morphological response of ECs to the realistic mechanical stimuli. Methods: The cell population is theoretically studied using our previous validated model. The mechanical stimuli on ECs are described using four parameters; WSS magnitude (0 to 2.0 Pa), WSS angle (− 50° to 50°), and biaxial CS in two perpendicular directions (0 to 10%). The morphology of ECs is reported using four parameters; average... 

    Healthy and diseasedin vitromodels of vascular systems

    , Article Lab on a Chip ; Volume 21, Issue 4 , 2021 , Pages 641-659 ; 14730197 (ISSN) Hosseini, V ; Mallone, A ; Nasrollahi, F ; Ostrovidov, S ; Nasiri, R ; Mahmoodi, M ; Haghniaz, R ; Baidya, A ; Salek, M. M ; Darabi, M. A ; Orive, G ; Shamloo, A ; Dokmeci, M. R ; Ahadian, S ; Khademhosseini, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Irregular hemodynamics affects the progression of various vascular diseases, such atherosclerosis or aneurysms. Despite the extensive hemodynamics studies on animal models, the inter-species differences between humans and animals hamper the translation of such findings. Recent advances in vascular tissue engineering and the suitability ofin vitromodels for interim analysis have increased the use ofin vitrohuman vascular tissue models. Although the effect of flow on endothelial cell (EC) pathophysiology and EC-flow interactions have been vastly studied in two-dimensional systems, they cannot be used to understand the effect of other micro- and macro-environmental parameters associated with... 

    Investigation of coronary artery tortuosity with atherosclerosis: A study on predicting plaque rupture and progression

    , Article International Journal of Mechanical Sciences ; Volume 223 , 2022 ; 00207403 (ISSN) Ebrahimi, S ; Fallah, F ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study investigated the effects of different patterns of coronary artery tortuosity (CAT) on the stress concentration of the plaques and the blood flow pattern inside an atherosclerotic artery to predict the risk of plaque rupture and progression. Four different loadings of the coronary artery, including pulsatile blood pressure as well as one-end twist around the artery axis at blood pressures of 74, 100, and 120 mmHg were considered. No study has addressed bent and twist buckling of an atherosclerotic artery considering pulsatile flow (for bent buckling), fluid-solid interaction, and different geometrical parameters of the plaque. The results showed that C-shape tortuosity under... 

    Nanotechnology in diagnosis and treatment of coronary artery disease

    , Article Nanomedicine ; Volume 11, Issue 5 , 2016 , Pages 513-530 ; 17435889 (ISSN) Karimi, M ; Zare, H ; Bakhshian Nik, A ; Yazdani, N ; Hamrang, M ; Mohamed, E ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Bakhtiari, L ; Hamblin, M. R ; Sharif University of Technology
    Future Medicine Ltd 
    Abstract
    Nanotechnology could provide a new complementary approach to treat coronary artery disease (CAD) which is now one of the biggest killers in the Western world. The course of events, which leads to atherosclerosis and CAD, involves many biological factors and cellular disease processes which may be mitigated by therapeutic methods enhanced by nanotechnology. Nanoparticles can provide a variety of delivery systems for cargoes such as drugs and genes that can address many problems within the arteries. In order to improve the performance of current stents, nanotechnology provides different nanomaterial coatings, in addition to controlled-release nanocarriers, to prevent in-stent restenosis.... 

    Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: a mechanical point of view

    , Article Biocybernetics and Biomedical Engineering ; Volume 39, Issue 1 , 2019 , Pages 188-198 ; 02085216 (ISSN) Jahromi, R ; Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Sp. z o.o  2019
    Abstract
    Biomechanical forces and hemodynamic factors influence the blood flow and the endothelial cells (ECs) morphology. These factors behave differently beyond the coronary artery stenosis. In the present study, unsteady blood flow in the left coronary artery (LCA) and its atherosclerotic bifurcating vessels, left anterior descending (LAD) and left circumflex (LCX) arteries, were numerically simulated to investigate the risk of plaque length development and secondary plaque formation in the post-stenotic areas. Using fluid–structure interaction (FSI) model, compliance of arterial wall and vessel curvature variations due to cardiac motion were considered. The arteries included plaques at the... 

    Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: a mechanical point of view

    , Article Biocybernetics and Biomedical Engineering ; Volume 39, Issue 1 , 2019 , Pages 188-198 ; 02085216 (ISSN) Jahromi, R ; Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Sp. z o.o  2019
    Abstract
    Biomechanical forces and hemodynamic factors influence the blood flow and the endothelial cells (ECs) morphology. These factors behave differently beyond the coronary artery stenosis. In the present study, unsteady blood flow in the left coronary artery (LCA) and its atherosclerotic bifurcating vessels, left anterior descending (LAD) and left circumflex (LCX) arteries, were numerically simulated to investigate the risk of plaque length development and secondary plaque formation in the post-stenotic areas. Using fluid–structure interaction (FSI) model, compliance of arterial wall and vessel curvature variations due to cardiac motion were considered. The arteries included plaques at the... 

    Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: interactive effects of wall shear stress and fluid-structure interaction in hypertension

    , Article Journal of Biomechanics ; 2017 ; 00219290 (ISSN) Roustaei, M ; Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration... 

    Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: interactive effects of wall shear stress and fluid-structure interaction in hypertension

    , Article Journal of Biomechanics ; Volume 67 , 2018 , Pages 114-122 ; 00219290 (ISSN) Roustaei, M ; Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration... 

    Thickness as an important parameter in designing vascular grafts

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014 ; Nov , 2014 , p. 40-43 Mohseni, M ; Shamloo, A ; Samani, S. A ; Dodel, M ; Sharif University of Technology
    Abstract
    The main goal of this study is to investigate the role of vascular graft thickness in wall stress gradient in anastomosis region. Atherosclerosis is a common heart disease causes high mortality rates every year. The gold standard treatment of atherosclerosis is replacing with autologous vein extracted from patient's body. Since proper autologous vein is limited, researchers have made efforts to achieve compliance engineered blood vessels. Mechanical stress has great effect on both smooth muscle cells and endothelial cells and it is considered as a stimulus in plaque formation. In this study, we evaluate the role of thickness in wall stress of anastomosis region. For this purpose, two... 

    Thickness as an important parameter in designing vascular grafts

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014, 26 November 2014 through 28 November 2014 ; November , 2014 , Pages 40-43 ; 9781479974177 (ISBN) Mohseni, M ; Shamloo, A ; Samani, S. A ; Dodel, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2014
    Abstract
    The main goal of this study is to investigate the role of vascular graft thickness in wall stress gradient in anastomosis region. Atherosclerosis is a common heart disease causes high mortality rates every year. The gold standard treatment of atherosclerosis is replacing with autologous vein extracted from patient's body. Since proper autologous vein is limited, researchers have made efforts to achieve compliance engineered blood vessels. Mechanical stress has great effect on both smooth muscle cells and endothelial cells and it is considered as a stimulus in plaque formation. In this study, we evaluate the role of thickness in wall stress of anastomosis region. For this purpose, two... 

    Numerical Investigation of Hypertension in Plaque Formation and Growth in Human Aorta

    , M.Sc. Thesis Sharif University of Technology Benvidi, Amir Abbas (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Nowadays, cardiovascular diseases are among the most prevalent cause of death worldwide. Besides, atherosclerosis is a cardiovascular disease happening with the continuous narrowing of vessels, especially medium and large-sized arteries. Moreover, the human aorta is vulnerable to this phenomenon. Atherosclerosis happens when the excess LDL in the blood flow penetrates the arterial wall. Then, the LDL is oxidized, thereby recruiting monocytes as the response against oxidized LDL. After monocytes enter the arterial wall, they differentiate and become macrophages. Macrophages then transform into foam cells by ingesting the oxidized LDL. The fatty foam cells are eventually responsible for the... 

    Simulation of LDL Permeation into Multilayer Coronary Arterial Wall: Interactive Effects of Wall Shear Stress and Fluid-Structure Interaction in Hypertension

    , M.Sc. Thesis Sharif University of Technology Roustaei, Mehrdad (Author) ; Dehghan Firoozabadi, Bahar (Supervisor)
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration... 

    Modeling of Deposition of Low Density Lipoprotein (LDL) in Carotid Artery

    , M.Sc. Thesis Sharif University of Technology Mirbagheri, Amir (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Atherosclerosis is one of the most important and common causes of death in the world. Atherosclerosis typically affects medium and large arteries in the body and it leads to plaque formation in arterial wall. The first stage of plaque formation has been related to accumulation of low density lipoproteins in arterial wall.
    The purpose of this research is presenting a four-layer model to describe the LDL transport in the arterial wall. The endothelium, intima, internal elastic lamina (IEL) and media are all treated as macroscopically homogeneous porous media and the volume-averaged porous media equations are employed to model various layers. The physiological parameters within the various... 

    Numerical Analysis of Channel Flow over an Elastic Bump, Using Lattice Boltzmann Method- A Biological Application

    , M.Sc. Thesis Sharif University of Technology Rostami Gandomani, Saeed (Author) ; Taeibi Rahni, Mohammad (Supervisor)
    Abstract
    In recent years, lattice Boltzmann method (LBM) has been developed to be used as an alternative and promising computational technique to simulate various flows. It originates from classical statistical physics. The ability to simply solve complex flows, simulating of multiphase and multi-component without need to follow the boundaries of different phases, and the inherent ability of parallel processing are notable features of this approach. On the other hand, finite element method (FEM) is widely used in many practical engineering fields, especially in solid mechanics. In this study, in addition to simulating flow over a rigid body, flow over an elastic body is also simulated with a... 

    , M.Sc. Thesis Sharif University of Technology Kelaretaghi, Naghi (Author) ; Hesaraki, Mahmoud (Supervisor)
    Abstract
    Our problem is to evaluation state and form of a tracer passing through the vessel. Using this method, we can identify the effect of during used in some defected parts of body. This evaluation leads to in solving a Laplace equation with mixed boundary condition. Separating that problem, we reach to a collection of algebraic and linear equations. Solving this system, we approximate coefficients of the solution with a series the existence and uniqueness of and analytic solution has been proved using the Eigen functions finally, using numerical algorithms, we have interpreted the analytical solutions.