Loading...
Search for: bagheri--reza
0.011 seconds
Total 76 records

    Study of Mechanical Properties of PP/r-PET Composite Reinforced with Flax Fiber

    , M.Sc. Thesis Sharif University of Technology Yosefinezhad, Mehdi (Author) ; Shojaei, Akbar (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    Recycling of polymers, with the aim of environmental protection and economical benefits, is important procedure, which is constantly developing. In this study the effect of the incorporation of recycled PET(r-PET) and recycled polypropylene/Flax(r-PP/Flax) to PP at low (20wt %) and medium content (40wt %) of r-PET was investigated. Polymer compounds were prepared by twin screw extruder followed by injection moulding. The effect of r-PP/Flax and r-PET on PP was evaluated using different techniques such as scanning electron microscopy (SEM), differential scanning calorimetery (DSC), rheological behavior, and mechanical properties (tensile modulus, yield strength, and charpy notched impact... 

    On the Study and Comparison of the Post-yield Strain Softening in Polymer and Cellular Solid under Compression Loading

    , Ph.D. Dissertation Sharif University of Technology Goodarzi Hosseinabadi, Hossein (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Strain softening after the yield point is a prevalent phenomenon in the stress-strain response of cellular solids, consisting of porosities in micro/macro-meter scale, as well as polymers, consisting of free volumes in sub-nanometer molecular scale. Although the underlying micromechanisms for softening in cellular solids are already known, the molecular origin for softening in polymers is still unknown. In this thesis, the micromechanisms of the softening in both materials are investigated. Then, a hypothesis is raised and evaluated to connect the nano-mechanics of softening in polymers to the micro-mechanics of softening in cellular solids. Experiments of compression test, positron-based... 

    Characterization of Mechanical Properties of Polymer Nanocomposites with Spherical Inhomogeneities

    , M.Sc. Thesis Sharif University of Technology Goudarzi, Taha (Author) ; Naghdabadi, Reza (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    The improved properties of nanocomposites are not achievable with conventional composites. Scale effect is one the most important parameters in the physical and mechanical properties of polymeric nanocomposites. One of the physical phenomena, which can be related to the scale effect, is the very large interface between the nanoparticles and the polymeric matrices. Motional behavior and conformation of polymeric chains change near the nanoparticles surfaces. Due to high interface of the nanoparticles with the polymeric matrices the amount of these types of changes in the polymeric chains are so large that can change the physical and mechanical properties of polymeric nanocomposites. In this... 

    Manufacturing and Characterization of Bone Scaffold Based on TCP

    , M.Sc. Thesis Sharif University of Technology Gorgin Karaji, Zahra (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Bone scaffolds are combinations of several materials, for achieving suitable properties and usage for replacing with defected bone. In this study, TCP/Agarose scaffolds are fabricated by two different approaches. The first one is using polymer sponge and gel casting technique and the other one is using foaming agent in order to obtain scaffolds with same porosity. The results show that in spite of same structure and porosity, scaffolds have different mechanical properties due to their different morphologies. Compressive strength of the scaffolds which were fabricated using polymer sponge method is 2.25MPa and elastic modulus is 56.8MPa. After coating with Agarose, compressive strength... 

    Fabrication and Surface Engineering of Pu-Tio2 Nanocomposites with Improved Mechanical, Surface and Hemocompatibility Properties with Usability in Vascular Tissue Engineering

    , Ph.D. Dissertation Sharif University of Technology Kianpour, Ghazal (Author) ; Baghery, Reza (Supervisor) ; Pourjavadi, Ali (Supervisor) ; Ghanbari, Hossein (Supervisor)
    Abstract
    The main focus of this project is the fabrication of surface engineering scaffolds based on polyurethane and titanium dioxide. The research's aim is the creation of the synergistic properties of TiO2 and PU as a new strategy for engineering artificial autologous blood vessels. In the first section, PU-TiO2 nanocomposites were synthesized by co-insitu synthesis of nanoparticles and polymer. The nanocomposite films were prepared by solvent casting and thermally induced phase separation methods. Mechanical and biological properties of films were compared with pure PU film. In solvent casting method, the outcomes revealed that the rate of endothelialization of the nanocomposite scaffold after 7... 

    Study on Effects of Short Wood Fibers on Physical and Mechanical Properties of Biodegradable Composite Based on Thermoplastic Starch

    , M.Sc. Thesis Sharif University of Technology Pesaran Haji Abbas, Ehsan (Author) ; Bagheri, Reza (Supervisor) ; Sayyed Reihani, Morteza (Supervisor)
    Abstract
    Due to the negative effects of conventional plastics on the enviroment, especially in the packaging sector, extensive efforts have been put to replace these polymers with biodegradable polymers. Starch is one of the biodegradable polymers which has attracted a lot of attentions because of low cost and good processability. Native starch has the form of granule and can be processed to a continuous phase after gelatinization in the presence of a plasticizer. The resulting material is a biodegradable plastic-like material called thermoplastic starch (TPS) which is processed using conventional technologies, but suffers from low mechanical properties and high hydrophilicity. Addition of natural... 

    Energy Management through Topology Optimization of Microstructure of Tow Phase Functionally Graded Materials (FGMs) under Dynamic Loading

    , M.Sc. Thesis Sharif University of Technology Homayounfar, Zohreh (Author) ; Bagheri, Reza (Supervisor) ; Tavakoli, Rouhollah (Co-Advisor)
    Abstract
    A numerical algorithm is proposed to design microstructure of a two-phase functionally graded material under dynamic loading. In order to direct energy propagation through the desired regions in the domain, we introduced a regularized Heaviside function, H(x), in our objective functional, namely the time-averaged sum of the elastic strain energy and the kinetic energy. Real-life systems are however, not undamped, but possess some kind of energy dissipation mechanism or damping. In order to apply modal analysis of undamped systems to damped systems, we use Rayleigh damping model in our formulations. To generate a well-posed topology optimization, we used homogenization via a solid isotropic... 

    , M.Sc. Thesis Sharif University of Technology Hadizadeh Harandi, Maryam (Author) ; Shojaei, Akbar (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    Taghizadeh Manzari, M. (MehrdadThe main goals of this project are studding the effect of carbon nanotube on the properties of PA6/PA66 matrix and miscibility of PA6/PA66 blend. So PA6/PA66/CNT nanocomposites were compounded by melt mixing method and samples were prepared by injection molding. Due to study miscibility of PA6 and PA66, we used DMTA test and found that PA6 and PA66 are miscible because of existing one pick on DMTA graph. Also DSC test results confirmed that PA6 and PA66 are miscible. Moreover, according to DMTA results, modulus will be rose by increasing CNT content. Mechanical test showed same results in this case. Adding 1%CNT to matrix caused 10% improvement in modulus and... 

    Studying the Effect of Rubber Type on Mechanical Behavior and Scratch Resistance of Rubber-Modified Copolypropylene

    , M.Sc. Thesis Sharif University of Technology Najaf Tomaraei, Golnaz (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Polypropylene (PP) has a great market among the commodity thermoplastics. However, its application as an engineering plastic is limited due to the poor toughness and impact strength, especially at low temperatures and high deformation rates. To overcome this shortcoming, elastomeric modifiers have been used in engineering applications and thus rubber-modified PP blends have become a field of growing interest. In this regard, there have been great advances in blending technologies and also catalysts used for polymerization of olefins. Among these advances, the most applicable ones are impact polypropylene copolymers and also the advent of new types of olefinic copolymers that can replace EPR... 

    Fabrication and Characterization of Nanocomposite Bone Scaffold with Gradient Structure Based on Thermoplastic Starch

    , M.Sc. Thesis Sharif University of Technology Mirab, Fereshteh (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Tissue regeneration by bio-compatible/degradable scaffolds is one of the widely used approaches in the field of tissue engineering. In this study, a thermoplastic starch based nanocomposite scaffold with gradient structure was fabricated by unidirectional freeze drying method. To increase the stability of the scaffold in the aqueous media, PVA was added to starch solution. Then, the PVA and starch molecules were cross-linked by adding citric acid to the mixture. On the one hand, to improve the mechanical properties of the scaffold, and control its bio-degradability on the other, cellulose nano-fibers were employed. Also, the bioactivity of the scaffold was induced by using hydroxyapatite... 

    Synthesis and Characterization of Nano-Composite Based on Supramolecuylar Poly Caprolactone/ Hydroxyapatite for Tissue Engineering Application

    , M.Sc. Thesis Sharif University of Technology Mehmanchi, Mohammad (Author) ; Bagheri, Reza (Supervisor) ; Shokrollahi, Parvin (Supervisor) ; Ataei, Mohammad (Co-Advisor)
    Abstract
    Synthetic polymers have a high capacity to provide and manufacture the pieces used in tissue engineering. However, optimizing the biocompatibility, bioresorbableility and mechanical properties simultaneous with processability of material is complicated and requires a lot of effort at designing different parts of the system. On the other hand, due to existence of secondary bonds (such as metal-ligand coordination or hydrogen bond) supramolecular polymers are able to respond to some stimuli such as temperature, pH, or pressure, which is important in terms of dynamic nature of interaction between the living cells and the external matrix of cell. Recently there have been extensive studies on... 

    Investigation of Fracture Toughness of Epoxy Resins by Addition of CNT and Rubber Microparticles

    , M.Sc. Thesis Sharif University of Technology Mehrabi, Fatemeh (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Epoxy resins are relatively brittle and have low resistance to crack propagation. It is common to add rubber particles to improve crack resistance in epoxies, although these particles may deteriorate the strength of the matrix. Different nanomaterials are used to overcome the inherent brittleness of epoxies and to keep the mechanical properties. Among them, carbon nanotubes has been attracted many attentions. Fractue behavior and mechanical properties of two kind of novel nanocomposites, i.e, epoxy/carbon nanotube and epoxy/rubber/carbon nanotube are investigated in current study. Electron microscopy investigations were done to assure the CNTs distribution and fracture mechanisms as well.... 

    Fabrication and Characterization of Thermoplastic Starch Based Nanocomposite for Bone Scaffold

    , M.Sc. Thesis Sharif University of Technology Mahdieh, Zahra (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    This project aimed to fabricate the bone scaffolds with applying thermoplastic starch-based nano-biocomposites. The starting materials for this scaffold are as follows: thermoplastic starch, ethylene vinyl alcohol as the polymer matrix and nanoforsterite as the ceramic reinforcing phase. Furthermore, vitamin E was used as antioxidant for preserving starch against thermo-mechanical degradations. Likewise, 3D pore structure was developed using azo-dicarbonamide and water in injection moulding process. With blending thermoplastic starch and ethylene vinyl alcohol, some thermoplastic starch’s properties including degradation rate and water absorption were modified. In addition, having... 

    Mechanical Behavior Analysis of Carbon Nanotube-Based Polymer Composites using Multiscale Modeling

    , Ph.D. Dissertation Sharif University of Technology Montazeri Hedesh , Abbas (Author) ; Naghdabadi, Reza (Supervisor) ; Rafii Tabar, Hashem (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    In this project, two multiscale modeling procedures have been implemented to study the mechanical behavior of SWCNT/polymer composites. First, a new three-phase molecular structural mechanics/ finite element (MSM/FE) multiscale model has been introduced which consists of three components, i.e. a carbon nanotube, an interphase layer and outer polymer matrix. The nanotube is modeled at the atomistic scale using MSM, whereas the interphase layer and polymer matrix are analyzed by the FE method. Using this model, we have investigated the macroscopic material properties of nanocomposite with and without considering the interphase and compared the results with molecular dynamics (MD) simulations.... 

    Fabrication and Study of Mechanical Behavior of in Situ Microfibrillar- Reinforced Composites of Polypropylene/Recycled Poly (Ethylene Terephthalate)Toughened with Rubber Particles

    , M.Sc. Thesis Sharif University of Technology Motahari, Tayebeh (Author) ; Bagheri, Reza (Supervisor) ; Alizadeh, Reza (Supervisor)
    Abstract
    The use of polymers is increasing day by day due to low density, reasonable price and ability to produce different products. On the other hand, the accumulation of polymer wastes in nature is one of the environmental concerns in today's world, which is mainly due to the widespread use of polymers in the packaging industry and disposable applications. In order to solve this problem, recycling is recommended as the most appropriate and economical solution. Because in addition to consuming polymer waste, it also saves energy and reduces carbon footprint.Polyethylene terephthalate (PET) is one of the polymeric materials which; It has a special place in the packaging industry and is widely used... 

    Synthesis, Characterization and Surface Modification of Iron Oxide Nanoparticles for Biomedical Applications

    , Ph.D. Dissertation Sharif University of Technology Mahmoudi, Morteza (Author) ; Simchi, Abdolreza (Supervisor) ; Imani, Mohammad (Supervisor) ; Bagheri, Reza (Supervisor)
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPION) with proper surface coatings are increasingly being evaluated for clinical applications such as hyperthermia, drug delivery, magnetic resonance imaging, transfection, and cell/protein separation. Since the particles with various sizes exhibit different flow rates in the same environment (same capillary size), it is essential to use particles of a desirable size for targeted drug delivery and imaging. Particles of different sizes may be exposed to different viscosities and behave differently, particularly with regard to their velocities as they move through capillaries. In the present work, SPION with different size, purity, shape and... 

    Studying the Effect of Zirconia & GNP on Mechanical, Tribological & Biological Properties of UHMWPE-HAp Nanocomposites used in Total Hip Joint Replacement

    , M.Sc. Thesis Sharif University of Technology Mohseni Taromsari, Sara (Author) ; Bagheri, Reza (Supervisor) ; Faghihi Sani, Mohammad Ali (Supervisor)
    Abstract
    Medical engineering advances in total joint replacements and society’s rising demand for long lasting materials, have proven it essential to manufacture materials that are more similar to the original tissue in the fields of mechanical, tribological and biological properties. Ultra High Molecular Weight Polyethylene(UHMWPE), is a polymer widely used in arthroplasty applications due to its biocompatibility, chemical stability and proper mechanical properties. In this study, UHMWPE-HAp nanocomposites reinforced with Zirconia and Graphene were manufactured aiming to reach a structure that is more compatible with bone tissue and also to improve overall properties. First, using ultrasonication... 

    Study of Mechanical Properties of Polypropylene in Local and Global Scales: Effect of Crystalline Structure and Testing Conditions

    , Ph.D. Dissertation Sharif University of Technology Lesan-Khosh Monfared, Rasool (Author) ; Bagheri, Reza (Supervisor) ; Asgari, Sirous (Supervisor) ; Naimi Jmal, Mohammad Reza (Co-Advisor)
    Abstract
    In this study, mechanical properties of neat isotactic polypropylene (iPP) were evaluated on local and global scales. Depth-sensing indentation with nanoscale resolution (nanoindentation) and traditional macromechanical tests were incorporated for this purpose at different temperatures and strain rates. Various morphologies and crystalline structures of iPP was obtained via changing processing conditions in melt state. A certain relation was found between the local and global mechanical properties, i. e. yield stress, modulus of elasticity and hardness. Moreover, developed yield models were evaluated on the local scale. The results showed that while crystal plasticity theory is not valid for... 

    An Investigation into Effects of Components Ratio and Nano/micro Sized ZnO Particles on Evolution of Transesterification Reaction, Compatiblization and Modification of PET/PC Blends Structure

    , M.Sc. Thesis Sharif University of Technology Ghahramanzadeh Asl, Hadi (Author) ; Bagheri, Reza (Supervisor) ; Pircheraghi, Gholamreza (Supervisor)
    Abstract
    Polycarbonate (PC) and polyethylene-terephthalate (PET) are important engineering thermoplastics. During last decades these polymers and their blends have been studied extensively due to their wide range of applications. Blends of PET and PC combine mechanical properties and chemical resistance together, which make applicable in various components such as automotive, electrical and of medical parts. It has been accepted that PET/PC immiscible blends are subjected to transesterification reactions during thermal processing, which produces PET-PC copolymer chains. In fact, scissioning and substitution of ester/carbonate functional groups of PC and PET at the interface, transforms the initial... 

    Fabrication and Assessment of Physical and Mechanical Properties of Thermoplastic Starch/ Cellulose Nanofibers Biocomposites

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Amir (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Due to the negative effects of conventional plastics on the environment, especially in the packaging sector, extensive efforts have been put to replace these polymers with biodegradable polymers. Starch is one of the biodegradable polymers which has attracted a lot of attentions because of low cost and good process ability. Native starch has the form of granule and can be processed to a continuous phase after gelatinization in the presence of a plasticizer. The resulting material is a biodegradable plastic-like material called thermoplastic starch (TPS) which is processed using conventional technologies, but suffers from low mechanical properties and high hydrophilicity. Addition of...