Loading...
Search for: bio-surfactant
0.011 seconds

    Efficient biodegradation of naphthalene by a newly characterized indigenous achromobacter sp. FBHYA2 isolated from Tehran oil refinery complex

    , Article Water Science and Technology ; Volume 66, Issue 3 , March , 2012 , Pages 594-602 ; 02731223 (ISSN) Farjadfard, S ; Borghei, S. M ; Hassani, A. H ; Yakhchali, B ; Ardjmand, M ; Zeinali, M ; Sharif University of Technology
    IWA Pub  2012
    Abstract
    A bacterial strain, FBHYA2, capable of degrading naphthalene, was isolated from the American Petroleum Institute (API) separator of the Tehran Oil Refinery Complex (TORC). Strain FBHYA2 was identified as Achromobacter sp. based on physiological and biochemical characteristics and also phylogenetic similarity of 16S rRNA gene sequence. The optimal growth conditions for strain FBHYA2 were pH 6.0, 30°C and 1.0% NaCl. Strain FBHYA2 can utilize naphthalene as the sole source of carbon and energy and was able to degrade naphthalene aerobically very fast, 48 h for 96% removal at 500 mg/L concentration. The physiological response of Achromobacter sp., FBHYA2 to several hydrophobic chemicals... 

    Herschel-Bulkley rheological parameters of lightweight colloidal gas aphron (CGA) based fluids

    , Article Chemical Engineering Research and Design ; Volume 93 , 2015 , Pages 21-29 ; 02638762 (ISSN) Ziaee, H ; Arabloo, M ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Institution of Chemical Engineers  2015
    Abstract
    The proper understanding of rheological characteristics of CGA based fluids is of crucial importance in determining the performance of the fluid, in order to maintain the most effective fluid properties for safe, efficient, and economical drilling operation. This paper presents a concise investigation on the effect of concentration of the three main components of a novel environmentally friendly lightweight CGA based drilling fluid, i.e., xanthan gum biopolymer, starch, and biosurfactant, to the Herschel-Bulkley rheological model parameters. The three parameters of Herschel-Bulkley model, i.e., yield stress, fluid consistency, and fluid flow index were calculated by fitting the experimental... 

    Wettability modification, interfacial tension and adsorption characteristics of a new surfactant: Implications for enhanced oil recovery

    , Article Full ; Volume 185 , 2016 , Pages 199-210 ; 00162361 (ISSN) Arabloo, M ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This paper concerns with the interfacial tension (IFT), wettability modification and adsorption behavior of a new plant-based surface active agent, Zizyphus Spina Christi, onto sandstone minerals which has been rarely attended in the available literature. Both kinetics and equilibrium adsorption data were obtained from batch mode tests. It was revealed that Freundlich isotherms matched better fit to the equilibrium data which implied that multilayer coverage of Zizyphus Spina Christi onto the sandstone particle surfaces was more likely to occur. Analysis of experimental kinetic data based on intraparticle diffusion model disclosed that the intraparticle diffusion mechanism is not the only... 

    Pore-scale analysis of filtration loss control by colloidal gas aphron nano-fluids (CGANF) in heterogeneous porous media

    , Article Experimental Thermal and Fluid Science ; Volume 77 , 2016 , Pages 327-336 ; 08941777 (ISSN) Tabzar, A ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier Inc  2016
    Abstract
    This study concerns micro-scale analysis of filtration loss control induced by blockage ability of a new colloidal gas fluid, Colloidal Gas Aphron Nano-Fluid (CGANF) in fractured porous media. Fumed silica nanoparticles and a novel environmentally friendly bio surfactant, Olea Europaea, were used for monitoring CGANF displacements in heterogeneous micromodels including single fracture. Analysis of pressure drop along the micromodel during tests showed an increasing resistance to flow of CGANF dispersion through porous media as more CGANF was injected. When lamella division occurs, more small bubbles are formed and then pressure drop through porous media increases. Small bubbles play an... 

    Investigating the synergic effects of chemical surfactant (SDBS) and biosurfactant produced by bacterium (Enterobacter cloacae) on IFT reduction and wettability alteration during MEOR process

    , Article Journal of Molecular Liquids ; Volume 256 , 2018 , Pages 277-285 ; 01677322 (ISSN) Hajibagheri, F ; Hashemi, A ; Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In the current study, a novel approach which takes into account the effectiveness of both convectional surfactants and biosurfactants was investigated. The biosurfactant produced by Enterobacter cloacae strain was utilized concomitant with conventional surfactant (sodium dodecyl benzene sulfonate (SDBS)) to evaluate its capability to reduce the SDBS adsorption on rock surface (biosurfactant acts as sacrificial agent) or synergistically enhance the effectiveness of the SDBS. In this regard, the wettability alteration and interfacial tension (IFT) measurements and calculation of spreading coefficient were performed considering two different scenarios. In the first scenario, SDBS was added to... 

    Comparison and modification of models in production of biosurfactant for Paenibacillus alvei and Bacillus mycoides and its effect on MEOR efficiency

    , Article Journal of Petroleum Science and Engineering ; Volume 128 , April , 2015 , Pages 177-183 ; 09204105 (ISSN) Najafi, A. R ; Roostaazad, R ; Soleimani, M ; Arabian, D ; Moazed, M. T ; Rahimpour, M. R ; Mazinani, S ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Biosurfactant production from two indigenous consortia has already been investigated in two previous studies. In this study, comparison and modification of those models for having as much biosurfactant as possible was conducted. After characterization of bacteria by biochemical tests and 16S ribotyping, a fully modification on the final models was presented. Response surface methodology has the ability to investigate the liability of the parameters and models by the help of Desirability mode and R2 coefficient in Design Expert software. Our models in the previous works follow the style of (y=f(A,B,. . .)) and two Desirability of 0.968 and 0.996 for Paenibacillus alvei ARN63 and Bacillus... 

    Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir

    , Article Applied Microbiology and Biotechnology ; Volume 97, Issue 13 , July , 2013 , Pages 5979-5991 ; 01757598 (ISSN) Rabiei, A ; Sharifinik, M ; Niazi, A ; Hashemi, A ; Ayatollahi, S ; Sharif University of Technology
    2013
    Abstract
    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC)... 

    Application of biosurfactants to wettability alteration and IFT reduction in enhanced oil recovery from oil-wet carbonates

    , Article Petroleum Science and Technology ; Volume 31, Issue 12 , Jul , 2013 , Pages 1259-1267 ; 10916466 (ISSN) Biria, D ; Maghsoudi, E ; Roostaazad, R ; Sharif University of Technology
    2013
    Abstract
    To obtain potentially applicable microorganisms to an effective in situ microbial enhanced oil recovery operation, bacteria that were compatible with the harsh conditions of a petroleum reservoir were isolated from a crude oil sample. The application of an oil spreading technique showed that all of the isolates were capable of producing biosurfactants from both the glucose and crude oil as carbon sources. The secreted biosurfactants could at least reduce the surface tension 20 mN/m and for one of the isolates; the surface tension value dropped below 40 mN/m. In addition, the contact angle measurements revealed that the produced biosurfactants could effectively alter the wettability of the... 

    Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01

    , Article World Journal of Microbiology and Biotechnology ; Volume 29, Issue 6 , June , 2013 , Pages 1039-1047 ; 09593993 (ISSN) Partovi, M ; Lotfabad, T. B ; Roostaazad, R ; Bahmaei, M ; Tayyebi, S ; Sharif University of Technology
    2013
    Abstract
    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals.... 

    Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 82, Issue 1 , 2011 , Pages 33-39 ; 09277765 (ISSN) Najafi, A. R ; Rahimpour, M. R ; Jahanmiri, A. H ; Roostaazad, R ; Arabian, D ; Soleimani, M ; Jamshidnejad, Z ; Sharif University of Technology
    Abstract
    The potential of an indigenous bacterial strain isolated from an Iranian oil field for the production of biosurfactant was investigated in this study. After isolation, the bacterium was characterized to be Paenibacillus alvei by biochemical tests and 16S ribotyping. The biosurfactant, which was produced by this bacterium, was able to lower the surface tension of media to 35. mN/m. Accordingly, thin layer chromatography (TLC) and FT-IR has been carried out to determine compositional analysis of the produced biosurfactant. After all the tests related to characterization of the biosurfactant produced by the isolated bacterium, it was characterized as lipopeptide derivative. The combination of... 

    Response surface methodology as an approach to optimize growth medium of indigenous strain of Bacillus mycoides for production of biosurfactant

    , Article ICBEE 2010 - 2010 2nd International Conference on Chemical, Biological and Environmental Engineering, Proceedings, 2 November 2010 through 4 November 2010 ; 2010 , Pages 146-152 ; 9781424487479 (ISBN) Najafi, A. R ; Rahimpour, M. R ; Jahanmiri, A. H ; Roostaazad, R ; Arabian, D ; Soleimani, M ; Sharif University of Technology
    Abstract
    In this study, we have investigated the potential of a native bacterial strain isolated from an Iranian oil field for the production of biosurfactant. The bacterium was identified to be Bacillus mycoides by biochemical tests and 16S ribotyping. The biosurfactant, which was produced by this bacterium, was able to reduce the surface tension of media to 34 mN/m. Biosurfactant production was optimized by the combination of central composite design (CCD) and response surface methodology (RSM). The factor selected for optimization of growth conditions were pH, temperature, glucose and salinity concentrations. The empirical model developed through RSM in terms of effective operational factors... 

    Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: Enhancement of di-rhamnolipid proportion using gamma irradiation

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 81, Issue 2 , 2010 , Pages 397-405 ; 09277765 (ISSN) Lotfabad, T. B ; Abassi, H ; Ahmadkhaniha, R ; Roostaazad, R ; Masoomi, F ; Zahiri, H. S ; Ahmadian, G ; Vali, H ; Noghabi, K. A ; Sharif University of Technology
    2010
    Abstract
    We previously reported that MR01, an indigenous strain of Pseudomonas aeruginosa, was able to produce a rhamnolipid-type biosurfactant. Here, we attempted to define the structural properties of this natural product. The analysis of the extracted biosurfactant by thin-layer chromatography (TLC) revealed the presence of two compounds corresponding to those of authentic mono- and di-rhamnolipid. The identity of two structurally distinguished rhamnolipids was confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Liquid chromatography/mass spectrometry (LC/MS) of extracted biosurfactant revealed up to seventeen different rhamnolipid congeners. Further quantification showed... 

    Enhancing biosurfactant production from an indigenous strain of Bacillus mycoides by optimizing the growth conditions using a response surface methodology

    , Article Chemical Engineering Journal ; Volume 163, Issue 3 , October , 2010 , Pages 188-194 ; 13858947 (ISSN) Najafi, A. R ; Rahimpour, M. R ; Jahanmiri, A. H ; Roostaazad, R ; Arabian, D ; Ghobadi, Z ; Sharif University of Technology
    2010
    Abstract
    In this study, we have investigated the potential of a native bacterial strain isolated from an Iranian oil field for the production of biosurfactant. The bacterium was identified to be Bacillus mycoides by biochemical tests and 16S ribotyping. The biosurfactant, which was produced by this bacterium, was able to reduce the surface tension of media to 34. mN/m. Compositional analysis of the produced biosurfactant has been carried out by thin layer chromatography (TLC) and FT-IR. The biosurfactant produced by the isolate was characterized as lipopeptide derivative. Biosurfactant production was optimized by the combination of central composite design (CCD) and response surface methodology... 

    A technical feasibility analysis to apply Pseudomonas aeroginosa MR01 biosurfactant in microbial enhanced oil recovery of low-permeability carbonate reservoirs of Iran

    , Article Scientia Iranica ; Volume 17, Issue 1 C , JANUARY-JUNE , 2010 , Pages 46-54 ; 10263098 (ISSN) Adelzadeh, M. R ; Roostaazad, R ; Kamali, M. R ; Bagheri Lotfabad, T ; Sharif University of Technology
    2010
    Abstract
    The effect of an efficient biosurfactant produced from Pseudomonas aeroginosa MR01, a bacterial strain isolated from oil excavation areas in southern Iran, on the recovery of residual oil trapped within carbonate rocks, was investigated. In a core holder set-up, bearing a number of limestone-and dolomite-containing core samples, biosurfactant flooding resulted in oil recoveries as large as 20% to 28% Residual Oil (R.O). Biosurfactant injection in less permeable rocks in a range of 0.5 to 32 md was more successful, in terms of oil production. In the case of the least oil recovery via biosurfactant flooding, incubation of the core with a biosurfactant solution at reservoir conditions,... 

    Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3

    , Article World Journal of Microbiology and Biotechnology ; Volume 26, Issue 5 , 2010 , Pages 871-878 ; 09593993 (ISSN) Biria, D ; Maghsoudi, E ; Roostaazad, R ; Dadafarin, H ; Sahebghadam Lotfi, A ; Amoozegar, M. A ; Sharif University of Technology
    2010
    Abstract
    The physical properties and chemical structure of a new biosurfactant (licheniformin) produced by Bacillus licheniformis MS3 were investigated. The purified biosurfactant was identified as a lipopeptide with amino acid sequence of Gly, Ala, Val, Asp, Ser, Gly, Tyr and a lactone linkage between the carboxyl group of Aspargine and hydroxyl group of Tyrosine residue. The fatty acid moiety was attached to N-terminal amino acid residue through an amide bond. The purified licheniformin could lower the surface tension of water from 72 to 38 mN/m at concentrations higher than 15 μg/mL and its relative emulsion volume (EV%) was equal to 36%. It also showed stable surface activity over a wide range of... 

    Model development for MEOR process in conventional non-fractured reservoirs and investigation of physico-chemical parameter effects

    , Article Chemical Engineering and Technology ; Volume 31, Issue 7 , 2008 , Pages 953-963 ; 09307516 (ISSN) Behesht, M ; Roostaazad, R ; Farhadpour, F ; Pishvaei, M. R ; Sharif University of Technology
    2008
    Abstract
    A three-dimensional multi-component transport model in a two-phase oil-water system was developed. The model includes separated terms to account for the dispersion, convection, injection, growth and death of microbes, and accumulation. For the first time, effects of both wettability alteration of reservoir rock from oil wet to water wet and reduction in interfacial tension (IFT) simultaneously on relative permeability and capillary pressure curves were included in a MEOR simulation model. Transport equations were considered for the bacteria, nutrients, and metabolite (bio-surfactant) in the matrix, reduced interfacial tension on phase trapping, surfactant and polymer adsorption, and effect...