Loading...
Search for: biomechanical-phenomena
0.008 seconds
Total 62 records

    Dynamic comparison of segmentary scapulohumeral rhythm between athletes with and without impingement syndrome

    , Article Iranian Journal of Radiology ; Vol. 11, issue. 2 , 2014 Taghizadeh Delkhoush, C ; Maroufi, N ; Ebrahimi Takamjani, I ; Farahmand, F ; Shakourirad, A ; Haghani, H ; Sharif University of Technology
    Abstract
    Background: Patients who have shoulder pain usually have compensatory or contributory deviation of shoulder motion during arm elevation. In the traditional scapulohumeral rhythm, the share of the acromioclavicular (AC) and the sternoclavicular (SC) joint movements and also the role of AC internal rotation angle are unknown. Objectives: The main purpose of this study was to measure and compare the segmentary scapulohumeral rhythm (SSHR) during scapular arm elevation at a steady rotational speed in athletes with and without impingement syndrome. Patients and Methods: Using a speedometer, the maximum speed of arm elevation was measured in 21 men in each of the involved and uninvolved groups.... 

    Lumbopelvic rhythm during forward and backward sagittal trunk rotations: Combined in vivo measurement with inertial tracking device and biomechanical modeling

    , Article Clinical Biomechanics ; Vol. 29, issue. 1 , 2014 , pp. 7-13 ; ISSN: 02680033 Tafazzol, A ; Arjmand, N ; Shirazi-Adl, A ; Parnianpour, M ; Sharif University of Technology
    Abstract
    Background The ratio of total lumbar rotation over pelvic rotation (lumbopelvic rhythm) during trunk sagittal movement is essential to evaluate spinal loads and discriminate between low back pain and asymptomatic population. Methods Angular rotations of the pelvis and lumbar spine as well as their sagittal rhythm during forward flexion and backward extension in upright standing of eight asymptomatic males are measured using an inertial tracking device. The effect of variations in the lumbopelvic ratio during trunk flexion on spinal loads is quantified using a detailed musculoskeletal model. Findings The mean of peak voluntary flexion rotations of the thorax, pelvis, and lumbar was 121 (SD... 

    Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces

    , Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) Tamjid, E ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    2013
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were... 

    Rehabilitation after ACL injury: A fluoroscopic study on the effects of type of exercise on the knee sagittal plane arthrokinematics

    , Article BioMed Research International ; Volume 2013 , July , 2013 ; 23146133 (ISSN) Norouzi, S ; Esfandiarpour, F ; Shakourirad, A ; Salehi, R ; Akbar, M ; Farahmand, F ; Sharif University of Technology
    2013
    Abstract
    A safe rehabilitation exercise for anterior cruciate ligament (ACL) injuries needs to be compatible with the normal knee arthrokinematics to avoid abnormal loading on the joint structures. The objective of this study was to measure the amount of the anterior tibial translation (ATT) of the ACL-deficient knees during selective open and closed kinetic chain exercises. The intact and injured knees of fourteen male subjects with unilateral ACL injury were imaged using uniplanar fluoroscopy, while the subjects performed forward lunge and unloaded/loaded open kinetic knee extension exercises. The ATTs were measured from fluoroscopic images, as the distance between the tibial and femoral reference... 

    Analysis of different material theories used in a FE model of a lumbar segment motion

    , Article Acta of Bioengineering and Biomechanics ; Volume 15, Issue 2 , 2013 , Pages 33-41 ; 1509409X (ISSN) Gohari, E ; Nikkhoo, M ; Haghpanahi, M ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    In this study, a nonlinear poroelastic model of intervertebral disc as an infrastructure was developed. Moreover, a new element was defined consisting a disc (Viscoelastic Euler Beam Element) and a vertebra (Rigid Link) as a unit element. Using the new element, three different viscoelastic finite element models were prepared for lumbar motion segment (L4/L5). Prolonged loading (short-term and long-term creep) and cyclic loading were applied to the models and the results were compared with results of in vivo tests. Simplification of the models by using the new element leads to reduction of the runtime of the models in dynamic analyses to few minutes without losing the accuracy in the results  

    Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells

    , Article Physical Biology ; Volume 10, Issue 4 , 2013 ; 14783967 (ISSN) Mas, J ; Richardson, A. C ; Reihani, S. N. S ; Oddershede, L. B ; Berg Sorensen, K ; Sharif University of Technology
    2013
    Abstract
    With the success of in vitro single-molecule force measurements obtained in recent years, the next step is to perform quantitative force measurements inside a living cell. Optical traps have proven excellent tools for manipulation, also in vivo, where they can be essentially non-invasive under correct wavelength and exposure conditions. It is a pre-requisite for in vivo quantitative force measurements that a precise and reliable force calibration of the tweezers is performed. There are well-established calibration protocols in purely viscous environments; however, as the cellular cytoplasm is viscoelastic, it would be incorrect to use a calibration procedure relying on a viscous environment.... 

    Trajectory of human movement during sit to stand: A new modeling approach based on movement decomposition and multi-phase cost function

    , Article Experimental Brain Research ; Volume 229, Issue 2 , 2013 , Pages 221-234 ; 00144819 (ISSN) Sadeghi, M ; Andani, M. E ; Bahrami, F ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    The purpose of this work is to develop a computational model to describe the task of sit to stand (STS). STS is an important movement skill which is frequently performed in human daily activities, but has rarely been studied from the perspective of optimization principles. In this study, we compared the recorded trajectories of STS with the trajectories generated by several conventional optimization-based models (i.e., minimum torque, minimum torque change and kinetic energy cost models) and also with the trajectories produced by a novel multi-phase cost model (MPCM). In the MPCM, we suggested that any complex task, such as STS, is decomposable into successive motion phases, so that each... 

    Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting

    , Article Journal of Biomechanics ; Volume 46, Issue 8 , 2013 , Pages 1454-1462 ; 00219290 (ISSN) Arjmand, N ; Ekrami, O ; Shirazi Adl, A ; Plamondon, A ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    Two artificial neural networks (ANNs) are constructed, trained, and tested to map inputs of a complex trunk finite element (FE) model to its outputs for spinal loads and muscle forces. Five input variables (thorax flexion angle, load magnitude, its anterior and lateral positions, load handling technique, i.e., one- or two-handed static lifting) and four model outputs (L4-L5 and L5-S1 disc compression and anterior-posterior shear forces) for spinal loads and 76 model outputs (forces in individual trunk muscles) are considered. Moreover, full quadratic regression equations mapping input-outputs of the model developed here for muscle forces and previously for spine loads are used to compare the... 

    Comparison of kinematics of ACL-deficient and healthy knees during passive flexion and isometric leg press

    , Article Knee ; Volume 20, Issue 6 , December , 2013 , Pages 505-510 ; 09680160 (ISSN) Esfandiarpour, F ; Shakourirad, A ; Talebian Moghaddam, S ; Olyaei, G ; Eslami, A ; Farahmand, F ; Sharif University of Technology
    Abstract
    Background: Studying the kinematics of the ACL deficient (ACLD) knees, during different physiological activities and muscle contraction patterns, can improve our understanding of the joint's altered biomechanics due to ACL deficiency as well as the efficacy and safety of the rehabilitations exercises. Methods: Twenty-five male volunteers, including 11 normal and 14 unilateral ACLD subjects, participated in this study. The kinematics of the injured knees of the ACLD subjects was compared with their intact knees and the healthy group during passive flexion and isometric leg press with the knees flexed from full extension to 45° flexion, with 15° intervals. An accurate registration algorithm... 

    Design and development of a hand robotic rehabilitation device for post stroke patients

    , Article Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference ; 2009 , Pages 5026-5029 ; 1557170X (ISSN) Rashedi, E ; Mirbagheri, A ; Taheri, B ; Farahmand, F ; Vossoughi, G. R ; Parnianpour, M ; Sharif University of Technology
    Abstract
    Robot-mediated rehabilitation is a rapidly advancing discipline that seeks to develop improved treatment procedures using new technologies, e.g., robotics, coupled with modern theories in neuroscience and rehabilitation. A robotic device was designed and developed for rehabilitation of upper limbs of post stroke patients. A novel force feedback bimanual working mode provided real-time dynamic sensation of the paretic hand. Results of the preliminary clinical tests revealed a quantitative evaluation of the patient's level of paresis and disability  

    Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine

    , Article Journal of Biomechanics ; Volume 57 , 2017 , Pages 18-26 ; 00219290 (ISSN) Eskandari, A. H ; Arjmand, N ; Shirazi Adl, A ; Farahmand, F ; Sharif University of Technology
    Abstract
    An essential input to the musculoskeletal (MS) trunk models that estimate muscle and spine forces is kinematics of the thorax, pelvis, and lumbar vertebrae. While thorax and pelvis kinematics are usually measured via skin motion capture devices (with inherent errors on the proper identification of the underlying bony landmarks and the relative skin-sensor-bone movements), those of the intervening lumbar vertebrae are commonly approximated at fixed proportions based on the thorax-pelvis kinematics. This study proposes an image-based kinematics measurement approach to drive subject-specific (musculature, geometry, mass, and center of masses) MS models. Kinematics of the thorax, pelvis, and... 

    Goal equivalent manifold analysis of task performance in non-specific LBP and healthy subjects during repetitive trunk movement; effect of load, velocity, symmetry

    , Article Human Movement Science ; Volume 51 , 2017 , Pages 72-81 ; 01679457 (ISSN) Chehrehrazi, M ; Sanjari, M. A ; Mokhtarinia, H. R ; Jamshidi, A. A ; Maroufi, N ; Parnianpour, M ; Sharif University of Technology
    Abstract
    Motor abundance allows reliability of motor performance despite its variability. The nature of this variability provides important information on the flexibility of control strategies. This feature of control may be affected by low back pain (LPB) and trunk flexion/extension conditions. Goal equivalent manifold (GEM) analysis was used to quantify the ability to exploit motor abundance during repeated trunk flexion/extension in healthy individuals and people with chronic non-specific LBP (CNSLBP). Kinematic data were collected from 22 healthy volunteers and 22 CNSLBP patients during metronomically timed, repeated trunk flexion/extension in three conditions of symmetry, velocity, and loading;... 

    Design optimization of an above-knee prosthesis based on the kinematics of gait

    , Article 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08, Vancouver, BC, 20 August 2008 through 25 August 2008 ; 2008 , Pages 4274-4277 ; 9781424418152 (ISBN) Pejhan, S ; Farahmand, F ; Parnianpour, M ; Sharif University of Technology
    2008
    Abstract
    A dynamic model of an above-knee prosthesis during the complete gait cycle was developed. The model was based on a two-dimensional multi-body mechanical system and included a hydraulic and an elastic controller for the knee and a kinematical driver controller for the prosthetic ankle. The equations of motion were driven using Lagrange method. Simulation of the foot contact was conducted using a two-point penetration contact model. The knee elastic and hydraulic controller units, the knee extension stop, and the kinematical driver controller of the ankle were represented by a spring and a dashpot, a nonlinear spring, and a torsional spring-damper within a standard prosthetic configuration.... 

    Assessing the role of Ca2+ in skeletal muscle fatigue using a multi-scale continuum model

    , Article Journal of Theoretical Biology ; Volume 461 , 2019 , Pages 76-83 ; 00225193 (ISSN) Karami, M ; Calvo, B ; Zohoor, H ; Firoozbakhsh, K ; Grasa, J ; Sharif University of Technology
    Academic Press  2019
    Abstract
    The Calcium ion Ca2+ plays a critical role as an initiator and preserving agent of the cross-bridge cycle in the force generation of skeletal muscle. A new multi-scale chemo-mechanical model is presented in order to analyze the role of Ca2+ in muscle fatigue and to predict fatigue behavior. To this end, a cross-bridge kinematic model was incorporated in a continuum based mechanical model, considering a thermodynamic compatible framework. The contractile velocity and the generated active force were directly related to the force-bearing states that were considered for the cross-bridge cycle. In order to determine the values of the model parameters, the output results of an isometric simulation... 

    Lower extremity kinematic analysis in male athletes with unilateral anterior cruciate reconstruction in a jump-landing task and its association with return to sport criteria

    , Article BMC Musculoskeletal Disorders ; Volume 20, Issue 1 , 2019 ; 14712474 (ISSN) Norouzi, S ; Esfandiarpour, F ; Mehdizadeh, S ; Yousefzadeh, N. K ; Parnianpour, M ; Sharif University of Technology
    BioMed Central Ltd  2019
    Abstract
    Background: Return to sport (RTS) criteria are widely being used to identify anterior cruciate ligament reconstructed (ACLR) athletes ready to return to sportive activity and reduce risk of ACL re-injury. However, studies show a high rate of ACL re-injury in athletes who passed RTS criteria. This indicates that the current RTS criteria might not be sufficient to determine return to sport time in ACLR athletes. Previous studies have reported a close association between altered lower limb kinematics and ACL re-injury. However, it is not clear how lower extremity kinematics differs between ACLR athletes who passed the RTS-criteria and who failed. This study compared lower extremity kinematics... 

    Can the body slope of interference screw affect initial stability of reconstructed anterior cruciate ligament?: An in-vitro investigation

    , Article BMC Musculoskeletal Disorders ; Volume 22, Issue 1 , 2021 ; 14712474 (ISSN) Daneshvarhashjin, N ; Chizari, M ; Mortazavi, J ; Rouhi, G ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Superior biomechanical performance of tapered interference screws, compared with non-tapered screws, with reference to the anterior cruciate ligament (ACL) reconstruction process, has been reported in the literature. However, the effect of tapered interference screw’s body slope on the initial stability of ACL is poorly understood. Thus, the main goal of this study was to investigate the effect of the interference screw’s body slope on the initial stability of the reconstructed ACL. Methods: Based on the best screw-bone tunnel diameter ratios in non-tapered screws, two different tapered interference screws were designed and fabricated. The diameters of both screws were equal to... 

    Trunk coordination in healthy and chronic nonspecific low back pain subjects during repetitive flexion-extension tasks: Effects of movement asymmetry, velocity and load

    , Article Human Movement Science ; Volume 45 , 2016 , Pages 182-192 ; 01679457 (ISSN) Mokhtarinia, H. R ; Sanjari, M. A ; Chehrehrazi, M ; Kahrizi, S ; Parnianpour, M ; Sharif University of Technology
    Elsevier 
    Abstract
    Multiple joint interactions are critical to produce stable coordinated movements and can be influenced by low back pain and task conditions. Inter-segmental coordination pattern and variability were assessed in subjects with and without chronic nonspecific low back pain (CNSLBP). Kinematic data were collected from 22 CNSLBP and 22 healthy volunteers during repeated trunk flexion-extension in various conditions of symmetry, velocity, and loading; each at two levels. Sagittal plane angular data were time normalized and used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify lumbar-pelvis and... 

    Comparison of the trunk-pelvis and lower extremities sagittal plane inter-segmental coordination and variability during walking in persons with and without chronic low back pain

    , Article Human Movement Science ; Volume 52 , 2017 , Pages 55-66 ; 01679457 (ISSN) Ebrahimi, S ; Kamali, F ; Razeghi, M ; Haghpanah, S. A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Inter-segmental coordination can be influenced by chronic low back pain (CLBP). The sagittal plane lower extremities inter-segmental coordination pattern and variability, in conjunction with the pelvis and trunk, were assessed in subjects with and without non-specific CLBP during free-speed walking. Kinematic data were collected from 10 non-specific CLBP and 10 non-CLBP control volunteers while the subjects were walking at their preferred speed. Sagittal plane time-normalized segmental angles and velocities were used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify the trunk-pelvis and bilateral... 

    The effect of functional bracing on the arthrokinematics of anterior cruciate ligament injured knees during lunge exercise

    , Article Gait and Posture ; Volume 63 , 2018 , Pages 52-57 ; 09666362 (ISSN) Jalali, M ; Farahmand, F ; Esfandiarpour, F ; Golestanha, S. A ; Akbar, M ; Eskandari, A ; Mousavi, S. E ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Background: Functional knee braces are extensively used for partially and completely torn anterior cruciate ligament (ACL) patients and those who have undergone ACL graft reconstruction, in order to support the healing ACL, improve the joint's functional stability, and restore the normal joint kinematics. Research question: Does wearing braces alter the arthrokinematics of the ACL deficient knees during lung exercise? Methods: For ten male unilateral ACL deficient subjects, 3D knee models were reconstructed from CT images, acquired in rest position. Sagittal plane fluoroscopy was then performed throughout a complete cycle of lunge in braced and non-braced conditions. The 3D kinematics of the... 

    Trunk, pelvis, and knee kinematics during running in females with and without patellofemoral pain

    , Article Gait and Posture ; Volume 89 , 2021 , Pages 80-85 ; 09666362 (ISSN) Haghighat, F ; Ebrahimi, S ; Rezaie, M ; Shafiee, E ; Shokouhyan, S. M ; Motealleh, A ; Parnianpour, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Background: Females are two times more likely to develop patellofemoral pain (PFP) than males. Abnormal trunk and pelvis kinematics are thought to contribute to the pathomechanics of this condition. However, there is a scarcity of evidence investigating proximal segments kinematics in females with PFP. Research question: The purpose of this study was to investigate whether females with PFP demonstrate altered trunk, pelvis, and knee joint kinematics compared with healthy controls during running. Methods: Thirty-four females (17 PFP, 17 controls) underwent a 3-dimensional motion analysis during treadmill running at preferred and fixed speeds, each trial for 30 s. Variables of interest...