Loading...
Search for: biomechanical-phenomena
0.007 seconds
Total 47 records

    Subject-specific loads on the lumbar spine in detailed finite element models scaled geometrically and kinematic-driven by radiography images

    , Article International Journal for Numerical Methods in Biomedical Engineering ; Volume 35, Issue 4 , 2019 ; 20407939 (ISSN) Dehghan Hamani, I ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Wiley-Blackwell  2019
    Abstract
    Traditional load-control musculoskeletal and finite element (FE) models of the spine fail to accurately predict in vivo intervertebral joint loads due mainly to the simplifications and assumptions when estimating redundant trunk muscle forces. An alternative powerful protocol that bypasses the calculation of muscle forces is to drive the detailed FE models by image-based in vivo displacements. Development of subject-specific models, however, both involves the risk of extensive radiation exposures while imaging in supine and upright postures and is time consuming in terms of the reconstruction of the vertebrae, discs, ligaments, and facets geometries. This study therefore aimed to introduce a... 

    Rigid-bar loading on pregnant uterus and development of pregnant abdominal response corridor based on finite element biomechanical model

    , Article International Journal for Numerical Methods in Biomedical Engineering ; Volume 36, Issue 1 , January , 2020 Irannejad Parizi, M ; Ahmadian, M. T ; Mohammadi, H ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    During pregnancy, traumas can threaten maternal and fetal health. Various trauma effects on a pregnant uterus are little investigated. In the present study, a finite element model of a uterus along with a fetus, placenta, amniotic fluid, and two most effective ligament sets is developed. This model allows numerical evaluation of various loading on a pregnant uterus. The model geometry is developed based on CT-scan data and validated using anthropometric data. Applying Ogden hyper-elastic theory, material properties of uterine wall and placenta are developed. After simulating the “rigid-bar” abdominal loading, the impact force and abdominal penetration are investigated. Findings are compared... 

    Improvement of upper limb motor control and function after competitive and noncompetitive volleyball exercises in chronic stroke survivors: a randomized clinical trial

    , Article Archives of Physical Medicine and Rehabilitation ; Volume 100, Issue 3 , 2019 , Pages 401-411 ; 00039993 (ISSN) Mandehgary Najafabadi, M ; Azad, A ; Mehdizadeh, H ; Behzadipour, S ; Fakhar, M ; Taghavi Azar Sharabiani, P ; Parnianpour, M ; Taghizadeh, G ; Khalaf, K ; Sharif University of Technology
    W.B. Saunders  2019
    Abstract
    Objectives: To investigate the effects of competitive and noncompetitive volleyball exercises on the functional performance and motor control of the upper limbs in chronic stroke survivors. Design: Randomized clinical trial. Setting: Outpatient rehabilitation center. Participants: Chronic stroke survivors (N=48). Interventions: Participants were randomly assigned to competitive (n=16) or noncompetitive (n=16) volleyball exercise groups (60min/d volleyball exercise+30min/d traditional rehabilitation, 3d/wk for 7wk) and control group (n=16). Main Outcome Measures: Reach and grasp motor control measures were evaluated through kinematic analysis. Functional outcomes were assessed via Motor... 

    Role and significance of trunk and upper extremity muscles in walker-assisted paraplegic gait: a case study

    , Article Topics in Spinal Cord Injury Rehabilitation ; Volume 24, Issue 1 , 2018 , Pages 18-27 ; 10820744 (ISSN) Baniasad, M ; Farahmand, F ; Arazpour, M ; Zohoor, H ; Sharif University of Technology
    Thomas Land Publishers Inc  2018
    Abstract
    Background and Purpose: Understanding the role and significance of trunk and upper extremity muscles in paraplegic gait can help in designing more effective assistive devices for these patients and also provides valuable information for improving muscle strengthening programs. Methods: In a patient with a spinal cord injury (SCI) who could walk independently (rating scale of ambulatory capacity, 9) with the aid of bilateral ankle-foot orthosis and a walker, the kinematics, kinetics and electromyographic (EMG) activities of 16 muscles from the trunk and upper and lower extremities were recorded during gait. The onset, cessation, and duration of the EMG signal were associated with the 4 phases... 

    Effect of intervertebral translational flexibilities on estimations of trunk muscle forces, kinematics, loads, and stability

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 18, Issue 16 , Sep , 2015 , Pages 1760-1767 ; 10255842 (ISSN) Ghezelbash, F ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Due to the complexity of the human spinal motion segments, the intervertebral joints are often simulated in the musculoskeletal trunk models as pivots thus allowing no translational degrees of freedom (DOFs). This work aims to investigate, for the first time, the effect of such widely used assumption on trunk muscle forces, spinal loads, kinematics, and stability during a number of static activities. To address this, the shear deformable beam elements used in our nonlinear finite element (OFE) musculoskeletal model of the trunk were either substantially stiffened in translational directions (SFE model) or replaced by hinge joints interconnected through rotational springs (HFE model). Results... 

    Design, construction, and evaluation of “sensor lock”: an electromechanical stance control knee joint

    , Article Disability and Rehabilitation: Assistive Technology ; Volume 13, Issue 3 , 2018 , Pages 226-233 ; 17483107 (ISSN) Arazpour, M ; Ahmadi Bani, M ; Baniasad, M ; Samadian, M ; Golchin, N ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Background and aim: Most currently-available stance control knee ankle foot orthoses (SCKAFOs) still need full knee extension to lock the knee joint, and they are still noisy, bulky, and heavy. Therefore, the aim of this study was to design, construct, and evaluate an original electromechanical SCKAFO knee joint that could feasibly solve these problems, and thus address the problems of current stance control knee joints with regards to their structure, function, cosmesis, and cost. Method: Ten able-bodied (AB) participants and two (knee ankle foot orthosis) KAFO users were recruited to participate in the study. A custom SCKAFO with the same set of components was constructed for each... 

    Nanomechanical properties of MscL α helices: A steered molecular dynamics study

    , Article Channels ; Volume 11, Issue 3 , 2017 , Pages 209-223 ; 19336950 (ISSN) Bavi, N ; Bavi, O ; Vossoughi, M ; Naghdabadi, R ; Hill, A. P ; Martinac, B ; Jamali, Y ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Gating of mechanosensitive (MS) channels is driven by a hierarchical cascade of movements and deformations of transmembrane helices in response to bilayer tension. Determining the intrinsic mechanical properties of the individual transmembrane helices is therefore central to understanding the intricacies of the gating mechanism of MS channels. We used a constant-force steered molecular dynamics (SMD) approach to perform unidirectional pulling tests on all the helices of MscL in M. tuberculosis and E. coli homologs. Using this method, we could overcome the issues encountered with the commonly used constant-velocity SMD simulations, such as low mechanical stability of the helix during... 

    A study of hyperelastic models for predicting the mechanical behavior of extensor apparatus

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 16, Issue 3 , 2017 , Pages 1077-1093 ; 16177959 (ISSN) Elyasi, N ; Karimi Taheri, K ; Narooei, K ; Karimi Taheri, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    In this research, the nonlinear elastic behavior of human extensor apparatus was investigated. To this goal, firstly the best material parameters of hyperelastic strain energy density functions consisting of the Mooney–Rivlin, Ogden, invariants, and general exponential models were derived for the simple tension experimental data. Due to the significance of stress response in other deformation modes of nonlinear models, the calculated parameters were used to study the pure shear and balance biaxial tension behavior of the extensor apparatus. The results indicated that the Mooney–Rivlin model predicts an unstable behavior in the balance biaxial deformation of the extensor apparatus, while the... 

    A three-dimensional statistical volume element for histology informed micromechanical modeling of brain white matter

    , Article Annals of Biomedical Engineering ; Volume 48, Issue 4 , 2020 , Pages 1337-1353 Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Springer  2020
    Abstract
    This study presents a novel statistical volume element (SVE) for micromechanical modeling of the white matter structures, with histology-informed randomized distribution of axonal tracts within the extracellular matrix. The model was constructed based on the probability distribution functions obtained from the results of diffusion tensor imaging as well as the histological observations of scanning electron micrograph, at two structures of white matter susceptible to traumatic brain injury, i.e. corpus callosum and corona radiata. A simplistic representative volume element (RVE) with symmetrical arrangement of fully alligned axonal fibers was also created as a reference for comparison. A... 

    A regenerative approach towards recovering the mechanical properties of degenerated intervertebral discs: Genipin and platelet-rich plasma therapies

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 231, Issue 2 , 2017 , Pages 127-137 ; 09544119 (ISSN) Nikkhoo, M ; Wang, J. L ; Abdollahi, M ; Hsu, Y. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    Degenerative disc disease, associated with discrete structural changes in the peripheral annulus and vertebral endplate, is one of the most common pathological triggers of acute and chronic low back pain, significantly depreciating an individual's quality of life and instigating huge socioeconomic costs. Novel emerging therapeutic techniques are hence of great interest to both research and clinical communities alike. Exogenous crosslinking, such as Genipin, and platelet-rich plasma therapies have been recently demonstrated encouraging results for the repair and regeneration of degenerated discs, but there remains a knowledge gap regarding the quantitative degree of effectiveness and... 

    Biomechanical simulation of eye-airbag impacts during vehicle accidents

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 232, Issue 7 , 2018 , Pages 699-707 ; 09544119 (ISSN) Shirzadi, H ; Zohoor, H ; Naserkhaki, S ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Airbags are safety devices in vehicles effectively suppressing passengers’ injuries during accidents. Although there are still many cases of eye injuries reported due to eye-airbag impacts in recent years. Biomechanical approaches are now feasible and can considerably help experts to investigate the issue without ethical concerns. The eye-airbag impact–induced stresses/strains in various components of the eye were found to investigate the risk of injury in different conditions (impact velocity and airbag pressure). Three-dimensional geometry of the eyeball, fat and bony socket as well as the airbag were developed and meshed to develop a finite element model. Nonlinear material properties of... 

    Biomechanical effects of lumbar fusion surgery on adjacent segments using musculoskeletal models of the intact, degenerated and fused spine

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Ebrahimkhani, M ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Adjacent segment disorders are prevalent in patients following a spinal fusion surgery. Postoperative alterations in the adjacent segment biomechanics play a role in the etiology of these conditions. While experimental approaches fail to directly quantify spinal loads, previous modeling studies have numerous shortcomings when simulating the complex structures of the spine and the pre/postoperative mechanobiology of the patient. The biomechanical effects of the L4–L5 fusion surgery on muscle forces and adjacent segment kinetics (compression, shear, and moment) were investigated using a validated musculoskeletal model. The model was driven by in vivo kinematics for both preoperative (intact or... 

    The influence of new reciprocating link medial linkage orthosis on walking and independence in a spinal cord injury patient

    , Article Spinal Cord ; Volume 53 , October , 2015 , Pages S10-S12 ; 13624393 (ISSN) Ahmadi Bani, M ; Arazpour, M ; Farahmand, F ; Azmand, A ; Hutchins, S. W ; Vahab Kashani, R ; Mousavi, M. E ; Sharif University of Technology
    Nature Publishing Group  2015
    Abstract
    Objectives: The purpose of this paper is to describe the development and evaluation of a new medial linkage reciprocating gait orthosis (MLRGO) that incorporates a reciprocal mechanism and is sensitive to pelvic motion to potentially assist paraplegic patients to walk and provide functional independence. Case description and methods: The new orthosis was constructed and tested by a 20-year-old female paraplegic subject with transverse myelitis at T10 level, who was 4 years post injury and had also been an isocentric reciprocating gait orthosis (IRGO) user for 2 years. She received gait training for 12 weeks before undertaking gait analysis, and also completed a questionnaire that was... 

    Anxiety and cognitive load affect upper limb motor control in Parkinson's disease during medication phases

    , Article Annals of the New York Academy of Sciences ; Volume 1494, Issue 1 , 2021 , Pages 44-58 ; 00778923 (ISSN) Nodehi, Z ; Mehdizadeh, H ; Azad, A ; Mehdizadeh, M ; Reyhanian, E ; Saberi, Z. S ; Meimandi, M ; Soltanzadeh, A ; Roohi Azizi, M ; Vasaghi Gharamaleki, B ; Parnianpour, M ; Khalaf, K ; Taghizadeh, G ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Anxiety is among the most debilitating nonmotor symptoms of Parkinson's disease (PD). This study aimed to determine how PD patients with low and high levels of anxiety (LA-PD and HA-PD, respectively) compare with age- and sex-matched controls at the level of motor control of reach-to-grasp movements during single- and dual-task conditions with varying complexity. Reach-to-grasp movement kinematics were assessed in 20 LA-PD, 20 HA-PD, and 20 sex- and age-matched healthy controls under single- as well as easy and difficult dual-task conditions. Assessment of PD patients was performed during both the on- and off-drug phases. The results obtained during dual-task conditions reveal deficits in... 

    Effects of an exercise therapy targeting knee kinetics on pain, function, and gait kinetics in patients with knee osteoarthritis: A randomized clinical trial

    , Article Adapted Physical Activity Quarterly ; Volume 38, Issue 3 , 2021 , Pages 377-395 ; 07365829 (ISSN) Bokaeian, H. R ; Esfandiarpour, F ; Zahednejad, S ; Kouhzad Mohammadi, H ; Farahmand, F ; Sharif University of Technology
    Human Kinetics Publishers Inc  2021
    Abstract
    In this study, the effects of an exercise therapy comprising yoga exercises and medial-thrust gait (YogaMT) on lower-extremity kinetics, pain, and function in patients with medial knee osteoarthritis were investigated. Fifty-nine patients were randomly allocated to three treatment groups: (a) the YogaMT group practiced yoga exercises and medial thrust gait, (b) the knee-strengthening group performed quadriceps-and hamstring-strengthening exercises, and (c) the treadmill walking group practiced normal treadmill walking in 12 supervised sessions. The adduction and flexion moments of the hip, knee, and ankle; pain intensity; and 2-min walking test were assessed before and after treatment and at... 

    Is there a reliable and invariant set of muscle synergy during isometric biaxial trunk exertion in the sagittal and transverse planes by healthy subjects?

    , Article Journal of Biomechanics ; Volume 48, Issue 12 , Sep , 2015 , Pages 3234-3241 ; 00219290 (ISSN) Sedaghat Nejad, E ; Mousavi, S. J ; Hadizadeh, M ; Narimani, R ; Khalaf, K ; Campbell Kyureghyan, N ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    It has been suggested that the central nervous system simplifies muscle control through basic units, called synergies. In this study, we have developed a novel target-matching protocol and used non-negative matrix factorization (NMF) technique to extract trunk muscle synergies and corresponding torque synergies. Isometric torque data at the L5/S1 level and electromyographic patterns of twelve abdominal and back muscles from twelve healthy participants (five females) were simultaneously recorded. Each participant performed a total number of 24 isometric target-matching tasks using 12 different angular directions and 2 levels of uniaxial and biaxial exertions. Within- and between-subject... 

    The effects of movement speed on kinematic variability and dynamic stability of the trunk in healthy individuals and low back pain patients

    , Article Clinical Biomechanics ; Volume 30, Issue 7 , Aug , 2015 , Pages 682-688 ; 02680033 (ISSN) Asgari, M ; Sanjari, M. A ; Mokhtarinia, H. R ; Moeini Sedeh, S ; Khalaf, K ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Background: Comparison of the kinematic variability and dynamic stability of the trunk between healthy and low back pain patient groups can contribute to gaining valuable information about the movement patterns and neuromotor strategies involved in various movement tasks. Methods: Fourteen chronic low back pain patients with mild symptoms and twelve healthy male volunteers performed repeated trunk flexion-extension movements in the sagittal plane at three different speeds: 20 cycles/min, self-selected, and 40 cycles/min. Mean standard deviations, coefficient of variation and variance ratio as variability measures; maximum finite-time Lyapunov exponents and maximum Floquet multipliers as... 

    Effect of body weight on spinal loads in various activities: A personalized biomechanical modeling approach

    , Article Journal of Biomechanics ; Volume 48, Issue 2 , 2015 , Pages 276-282 ; 00219290 (ISSN) Hajihosseinali, M ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Epidemiological studies are divided over the causative role of body weight (BW) in low back pain. Biomechanical modeling is a valuable approach to examine the effect of changes in BW on spinal loads and risk of back pain. Changes in BW have not been properly simulated by previous models as associated alterations in model inputs on the musculature and moment arm of gravity loads have been neglected. A detailed, multi-joint, scalable model of the thoracolumbar spine is used to study the effect of BW (varying at five levels, i.e., 51, 68, 85, 102, and 119kg) on the L5-S1 spinal loads during various static symmetric activities while scaling moment arms and physiological cross-sectional areas of... 

    Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities

    , Article Applied Ergonomics ; Volume 48 , 2015 , Pages 22-32 ; 00036870 (ISSN) Rajaee, M. A ; Arjmand, N ; Shirazi Adl, A ; Plamondon, A ; Schmidt, H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Different lifting analysis tools are commonly used to assess spinal loads and risk of injury. Distinct musculoskeletal models with various degrees of accuracy are employed in these tools affecting thus their relative accuracy in practical applications. The present study aims to compare predictions of six tools (HCBCF, LSBM, 3DSSPP, AnyBody, simple polynomial, and regression models) for the L4-L5 and L5-S1 compression and shear loads in twenty-six static activities with and without hand load. Significantly different spinal loads but relatively similar patterns for the compression (R2>0.87) were computed. Regression models and AnyBody predicted intradiscal pressures in closer agreement with... 

    Phenomenological tissue fracture modeling for an Endoscopic Sinus and Skull Base Surgery training system based on experimental data

    , Article Medical Engineering and Physics ; Volume 68 , 2019 , Pages 85-93 ; 13504533 (ISSN) Sadeghnejad, S ; Farahmand, F ; Vossoughi, G ; Moradi, H ; Mousa Sadr Hosseini, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The ideal simulator for Endoscopic Sinus and Skull Base Surgery (ESSS)training must be supported by a physical model and provide repetitive behavior in a controlled environment. Development of realistic tissue models is a key part of ESSS virtual reality (VR)-based surgical simulation. Considerable research has been conducted to address haptic or force feedback and propose a phenomenological tissue fracture model for sino-nasal tissue during surgical tool indentation. Mechanical properties of specific sino-nasal regions of the sheep head have been studied in various indentation and relaxation experiments. Tool insertion at different indentation rates into coronal orbital floor (COF)tissue is...