Loading...
Search for: bioprinting
0.005 seconds

    3D Bioprinting of Amniotic Membrane-Based Nanocomposite for Tissue Engineering Applications: Evaluation of Rheological, Mechanical and Biological Properties

    , Ph.D. Dissertation Sharif University of Technology Kafili, Golara (Author) ; Simchi, Abdolreza (Supervisor) ; Tamjid, Elnaz (Supervisor) ; Niknejad, Hassan (Co-Supervisor)
    Abstract
    3D bioprinting is an additive manufacturing method that facilitates the deposition of the desired cells and biomaterials at any pre-defined location. This technique also enables control over the internal structure and external dimensions of printed constructs. Among various biomaterials used as bioinks, the bioinks derived from decellularized extracellular matrixes (dECMs) have attracted significant attention due to their bioactivity and being a rich source of biochemical cues. Here in this study, the decellularized amnion membrane (dAM) has been selected as the main component of the bioink formulation because of its biocompatibility, low immunogenicity, antibacterial property, abundance,... 

    Design and Fabrication af a Bioceramic-Polymer Composite Scaffold Using Bioprinter for Regeneration of Osteochondral Tissue

    , M.Sc. Thesis Sharif University of Technology Hadian, Hamid Reza (Author) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    In this work, we have used a 3D printer and unidirectional ice-templating technique in conjunction, to fabricate a novel composite scaffold to facilitate local osteochondral defects tissue regeneration with a cell-free approach. Using ice-templating to induce radially-aligned porosity formation in type I bovine collagen is known to expedite host cells' migration into the scaffold which their ECM secretion shifts cellular milieu toward that of its neighboring tissue layer. We used numerical analysis to design and optimize appropriate freeze-casting mold, finding the optimum value for pin height and metal slab depth to be 4mm and 14mm, respectively. Collagen content equivalent to 2%w/v was... 

    Design and Optimization of Channeled Hydrogel Scaffold Based on Extracellular Matrix of Heart Tissue with Oxygen Release Capability

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Sara (Author) ; Mashayekhan, Shohreh (Supervisor) ; Khorshidi, Sajedeh (Co-Supervisor)
    Abstract
    Despite the increase in the number of cardiovascular diseases worldwide, the number of new drugs to treat these diseases has been decreasing in the last decade. Current preclinical drug evaluation strategies, which use cell cultures and oversimplified animal models, cannot meet the growing demand for new and effective drugs. In the last decade, the development of microfluidic bioreactors and organ-on-chip systems to improve the drug screening process has been increasing significantly. These systems have shown many advantages over previous preclinical models. Despite all these advantages, keeping the oxygen concentration at the optimal physiological level in microfluidic systems has its own... 

    Design of Scaffolds with Multi-scale Engineered Microchannels

    , M.Sc. Thesis Sharif University of Technology Mollajavadi, Mohammad Yasin (Author) ; Saadatmand, Maryam (Supervisor)
    Abstract
    Building complex and functional tissues and organs is very challenging. One of the challenges is building an efficient network of blood vessels that can be used to facilitate the transport of nutrients and oxygen to the host. In addition to using channels for oxygen supply, another solution is to use oxygen-carrying materials. In this study, in addition to designing and simulating scaffolds with multi-scale microchannels, calcium peroxide was used to release oxygen and eliminate hypoxia in the scaffold. Here alginate is used as the main material for scaffolding. In an attempt to build a scaffold using a bio-printer, pluronic acid was also used as a sacrificial material to create canals.... 

    Three-dimensional bioprinting of functional skeletal muscle tissue using gelatin methacryloyl-alginate bioinks

    , Article Micromachines ; Volume 10, Issue 10 , 2019 ; 2072666X (ISSN) Seyedmahmoud, R ; Çelebi Saltik, B ; Barros, N ; Nasiri, R ; Banton, E ; Shamloo, A ; Ashammakhi, N ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Skeletal muscle tissue engineering aims to fabricate tissue constructs to replace or restore diseased or injured skeletal muscle tissues in the body. Several biomaterials and microscale technologies have been used in muscle tissue engineering. However, it is still challenging to mimic the function and structure of the native muscle tissues. Three-dimensional (3D) bioprinting is a powerful tool to mimic the hierarchical structure of native tissues. Here, 3D bioprinting was used to fabricate tissue constructs using gelatin methacryloyl (GelMA)-alginate bioinks. Mechanical and rheological properties of GelMA-alginate hydrogels were characterized. C2C12 myoblasts at the density 8 × 106 cells/mL... 

    Stereolithography 3D bioprinting method for fabrication of human corneal stroma equivalent

    , Article Annals of Biomedical Engineering ; Volume 48, Issue 7 , June , 2020 , Pages 1955-1970 Mahdavi, S. S ; Abdekhodaie, M. J ; Kumar, H ; Mashayekhan, S ; Baradaran Rafii, A ; Kim, K ; Sharif University of Technology
    Springer  2020
    Abstract
    Abstract: 3D bioprinting technology is a promising approach for corneal stromal tissue regeneration. In this study, gelatin methacrylate (GelMA) mixed with corneal stromal cells was used as a bioink. The visible light-based stereolithography (SLA) 3D bioprinting method was utilized to print the anatomically similar dome-shaped structure of the human corneal stroma. Two different concentrations of GelMA macromer (7.5 and 12.5%) were tested for corneal stroma bioprinting. Due to high macromer concentrations, 12.5% GelMA was stiffer than 7.5% GelMA, which made it easier to handle. In terms of water content and optical transmittance of the bioprinted scaffolds, we observed that scaffold with... 

    Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering

    , Article Nano-Micro Letters ; Volume 13, Issue 1 , 2021 ; 23116706 (ISSN) Rahimnejad, M ; Nasrollahi Boroujeni, N ; Jahangiri, S ; Rabiee, N ; Rabiee, M ; Makvandi, P ; Akhavan, O ; Varma, R. S ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Efficient strategies to promote microvascularization in vascular tissue engineering, a central priority in regenerative medicine, are still scarce; nano- and micro-sized aggregates and spheres or beads harboring primitive microvascular beds are promising methods in vascular tissue engineering. Capillaries are the smallest type and in numerous blood vessels, which are distributed densely in cardiovascular system. To mimic this microvascular network, specific cell components and proangiogenic factors are required. Herein, advanced biofabrication methods in microvascular engineering, including extrusion-based and droplet-based bioprinting, Kenzan, and biogripper approaches, are deliberated with... 

    Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review

    , Article Bioprinting ; Volume 25 , 2022 ; 24058866 (ISSN) Mohammadi Zerankeshi, M ; Bakhshi, R ; Alizadeh, R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The employment of tissue engineering scaffolds in the reconstruction of the damaged bone tissues has shown remarkable promise since they significantly facilitate the healing process. Fabrication of highly porous biocompatible scaffolds with sufficient mechanical strength is still challenging. In this regard, polymers have been widely utilized to construct three-dimensional (3D) porous scaffolds due to their excellent processability and biocompatibility. However, insufficient mechanical strength and inappropriate degradation rate of the monophasic polymer scaffolds in the bone regeneration process, as the main challenges, limit their extensive clinical application. The incorporation of... 

    Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing

    , Article Advanced Drug Delivery Reviews ; Volume 123 , 2018 , Pages 33-64 ; 0169409X (ISSN) Mofazzal Jahromi, M. A ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Sahandi Zangabad, K ; Ghamarypour, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally... 

    Microfluidics-Enabled multimaterial maskless stereolithographic bioprinting

    , Article Advanced Materials ; Volume 30, Issue 27 , 2018 ; 09359648 (ISSN) Miri, A. K ; Nieto, D ; Iglesias, L ; Goodarzi Hosseinabadi, H ; Maharjan, S ; Ruiz Esparza, G. U ; Khoshakhlagh, P ; Manbachi, A ; Dokmeci, M. R ; Chen, S ; Shin, S. R ; Zhang, Y. S ; Khademhosseini, A ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    A stereolithography-based bioprinting platform for multimaterial fabrication of heterogeneous hydrogel constructs is presented. Dynamic patterning by a digital micromirror device, synchronized by a moving stage and a microfluidic device containing four on/off pneumatic valves, is used to create 3D constructs. The novel microfluidic device is capable of fast switching between different (cell-loaded) hydrogel bioinks, to achieve layer-by-layer multimaterial bioprinting. Compared to conventional stereolithography-based bioprinters, the system provides the unique advantage of multimaterial fabrication capability at high spatial resolution. To demonstrate the multimaterial capacity of this... 

    Methods for biomaterials printing: A short review and perspective

    , Article Methods ; Volume 206 , 2022 , Pages 1-7 ; 10462023 (ISSN) Shokrani, H ; Shokrani, A ; Saeb, M. R ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Printing technologies have opened larger windows of innovation and creativity to biomaterials engineers by providing them with the ability to fabricate complex shapes in a reasonable time, cost, and weight. However, there has always been a trouble with function adjusting in printing technologies in view of the multiplicity of materials and apparatus parameters. 3D printing, also known as additive manufacturing, revolutionized biomaterials engineering by the conversion of a digital subject into a printed object (implants, scaffolds, or diagnostics and drug delivery devices/systems). Inspired by the lessons learned from 3D printing, the concept of 4D printing (better called shape-morphing... 

    Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications

    , Article Acta Biomaterialia ; Volume 62 , 2017 , Pages 42-63 ; 17427061 (ISSN) Vedadghavami, A ; Minooei, F ; Mohammadi, M. H ; Khetani, S ; Rezaei Kolahchi, A ; Mashayekhan, S ; Sanati Nezhad, A ; Sharif University of Technology
    Abstract
    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most... 

    Emerging bioengineering strategies for regulating stem cell fate: Scaffold physical and biochemical cues

    , Article Tissue Engineering: Current Status and Challenges ; 2022 , Pages 125-156 ; 9780128240649 (ISBN) Sharareh Mahdavi, S ; Mashayekhan, S ; Sharif University of Technology
    Elsevier  2022
    Abstract
    Stem cell therapy has been introduced as an emerging approach for injured tissue regeneration. This chapter addresses developing regenerative medicine techniques for controlling stem cell behavior. Recent studies have been reviewed and novel approaches have been divided into four main categories: 3D bioprinting, lithography, microfluidics, and electrospinning. Moreover, the impact of applied biophysical and/or biochemical cues to the designed scaffold on controlling stem cell activity has been discussed. The potential of using stem cells for various soft and hard tissue regenerations has been explored in different bioengineered scaffolds and the applied techniques for controlling stem cell... 

    Controlling differentiation of stem cells for developing personalized organ-on-chip platforms

    , Article Advanced Healthcare Materials ; Volume 7, Issue 2 , 2018 ; 21922640 (ISSN) Geraili, A ; Jafari, P ; Sheikh Hassani, M ; Heidary Araghi, B ; Mohammadi, M. H ; Ghafari, A. M ; Hassanpour Tamrin, S ; Pezeshgi Modarres, H ; Rezaei Kolahchi, A ; Ahadian, S ; Sanati Nezhad, A ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Organ-on-chip (OOC) platforms have attracted attentions of pharmaceutical companies as powerful tools for screening of existing drugs and development of new drug candidates. OOCs have primarily used human cell lines or primary cells to develop biomimetic tissue models. However, the ability of human stem cells in unlimited self-renewal and differentiation into multiple lineages has made them attractive for OOCs. The microfluidic technology has enabled precise control of stem cell differentiation using soluble factors, biophysical cues, and electromagnetic signals. This study discusses different tissue- and organ-on-chip platforms (i.e., skin, brain, blood–brain barrier, bone marrow, heart,... 

    Bioprinting a thick and cell-laden partially oxidized alginate-gelatin scaffold with embedded micro-channels as future soft tissue platform

    , Article International Journal of Biological Macromolecules ; Volume 193 , 2021 , Pages 2153-2164 ; 01418130 (ISSN) Khalighi, S ; Saadatmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Despite all the advancements in tissue engineering, one of the unsolved challenges is the mass transfer limitation. Therefore, the subject of pre-vascularization in the engineered tissues gets more attention to avoid necrotic core formation. In this study, we considered a design for interconnected channels with a muscle tissue-like structure, in silico and in vitro. A sequence of simple steps make it possible for us to use the same material, gelatin, as both a sacrificial material and one of the main components of the scaffold simultaneously. We defined a new approach to quantify the repeatability of a new combination of hydrogels (Partially Oxidized Alginate + Gelatin) for extrusion-based... 

    Bioengineering approaches for corneal regenerative medicine

    , Article Tissue Engineering and Regenerative Medicine ; Volume 17, Issue 5 , July , 2020 , Pages 567-593 Mahdavi, S. S ; Abdekhodaie, M. J ; Mashayekhan, S ; Baradaran Rafii, A ; Djalilian, A. R ; Sharif University of Technology
    Korean Tissue Engineering and Regenerative Medicine Society  2020
    Abstract
    Background:: Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. Methods:: In this review, we first discussed the anatomy of the cornea and the required properties for... 

    Additive manufacturing of bioactive glass biomaterials

    , Article Methods ; Volume 208 , 2022 , Pages 75-91 ; 10462023 (ISSN) Simorgh, S ; Alasvand, N ; Khodadadi, M ; Ghobadi, F ; Malekzadeh Kebria, M ; Brouki Milan, P ; Kargozar, S ; Baino, F ; Mobasheri, A ; Mozafari, M ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Tissue engineering (TE) and regenerative medicine have held great promises for the repair and regeneration of damaged tissues and organs. Additive manufacturing has recently appeared as a versatile technology in TE strategies that enables the production of objects through layered printing. By applying 3D printing and bioprinting, it is now possible to make tissue-engineered constructs according to desired thickness, shape, and size that resemble the native structure of lost tissues. Up to now, several organic and inorganic materials were used as raw materials for 3D printing; bioactive glasses (BGs) are among the most hopeful substances regarding their excellent properties (e.g., bioactivity... 

    A 3D-printed hybrid nasal cartilage with functional electronic olfaction

    , Article Advanced Science ; Volume 7, Issue 5 , 2020 Jodat, Y. A ; Kiaee, K ; Vela Jarquin, D ; De la Garza Hernández, R. L ; Wang, T ; Joshi, S ; Rezaei, Z ; de Melo, B. A. G ; Ge, D ; Mannoor, M. S ; Shin, S. R ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Advances in biomanufacturing techniques have opened the doors to recapitulate human sensory organs such as the nose and ear in vitro with adequate levels of functionality. Such advancements have enabled simultaneous targeting of two challenges in engineered sensory organs, especially the nose: i) mechanically robust reconstruction of the nasal cartilage with high precision and ii) replication of the nose functionality: odor perception. Hybrid nasal organs can be equipped with remarkable capabilities such as augmented olfactory perception. Herein, a proof-of-concept for an odor-perceptive nose-like hybrid, which is composed of a mechanically robust cartilage-like construct and a biocompatible... 

    3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs

    , Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 Erdem, A ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties...