Loading...
Search for: chemical
0.027 seconds
Total 2126 records

    A zwitterion metal-organic framework for the removal of fluoride from an aqueous solution

    , Article Journal of Chemical Sciences ; Volume 134, Issue 3 , 2022 ; 09743626 (ISSN) Aliakbari, M ; Gholami, R. M ; Borghei, S. M ; Sharif University of Technology
    Springer  2022
    Abstract
    Excess fluoride is one of the water pollutants in the world, which is removed from water by chemical methods to produce sludge. On the other hand, techniques such as R.O. (Reverse Osmosis) also have problems with power consumption and wastewater disposal. Metal-organic frameworks are one of the newest adsorbents used to separate anions. In this study, MOF1 ({[Zn3L3(BPE)1.5]·4.5DMF}n) was used to remove fluoride from the aqueous solution. The influence of various factors such as pH, contact time, adsorbent amount, and temperature on fluoride uptake was investigated. Based on the results, the MOF synthesized in acidic media absorbs more fluoride ions. The reaction time in the first 20 min had... 

    Efficient and less-toxic indium-doped mapbi3 perovskite solar cells prepared by metal alloying technique

    , Article Solar RRL ; Volume 6, Issue 9 , 2022 ; 2367198X (ISSN) Tavakoli, M. M ; Fazel, Z ; Tavakoli, R ; Akin, S ; Satapathi, S ; Prochowicz, D ; Yadav, P ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Perovskite materials with ABX3 structure (A: organic, B: metal, and X: halides) have attracted tremendous attention due to their outstanding optoelectronic properties. Herein, a novel approach is developed using chemical vapor deposition (CVD), i.e., metal alloying of halide-perovskite domain via ion-transfer (MAHDI) for the growth of high-quality perovskite films, grown directly from a metal precursor. This technique easily enables us to replace the toxic Pb metal (B site) with other metals using alloying approach. Using the proposed approach, we fabricated stable and efficient Pb–In perovskite solar cells (PSCs) with a maximum power conversion efficiency (PCE) of 21.2%, which is more... 

    Efficient back analysis of multiphysics processes of gas hydrate production through artificial intelligence

    , Article Fuel ; Volume 323 , 2022 ; 00162361 (ISSN) Zhou, M ; Shadabfar, M ; Huang, H ; Leung, Y. F ; Uchida, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Natural gas hydrate, a crystalline solid existing under high-pressure and low-temperature conditions, has been regarded as a potential alternative energy resource. It is globally widespread and occurs mainly inside the pores of deepwater sediments and sediments under permafrost area. Hydrate production via well depressurization is deemed well-suited to existing technology, in which the pore pressure is lowered, the natural gas hydrate is dissociated into water and gas, and the water and gas are produced from well. This method triggers multiphysics processes such as fluid flow, heat transfer, energy adsorption, chemical reaction and sediment deformation, all of which are dependent on the... 

    In-depth characterization of light, medium and heavy oil asphaltenes as well as asphaltenes subfractions

    , Article Fuel ; Volume 324 , 2022 ; 00162361 (ISSN) Salehzadeh, M ; Husein, M. M ; Ghotbi, C ; Dabir, B ; Taghikhani, V ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Asphaltenes, and their related issues, have been the focus of many literature investigations. However, in-depth analysis of asphaltenes structure and its relation to asphaltenes stability has been considered by fewer studies. In this research, extensive analysis of the structure of asphaltenes extracted from light, medium, and heavy oils is provided, together with analysis of three subfractions of the medium oil asphaltene having the least, intermediate, and highest solubilities. To this end, elemental analysis, EDX, mass spectroscopy, FTIR, NMR, XRD, and SEM results were collected. Higher hydrogen content and hydrogen/carbon atomic ratio, lower aromatic nature and olefinic entities were... 

    Structural and theoretical exploring of noncovalent interactions in Chlorido- and Nitrito-rhenium(I) tricarbonyl complexes bearing 2,3-Butadiene-bis(2-nitrobenzylidene)hydrazine Ligand: Intramolecular Re–κ1-endo-ONO(lone pair)…π*(C[tbnd]O) interaction

    , Article Inorganica Chimica Acta ; Volume 540 , 2022 ; 00201693 (ISSN) Kia, R ; Heshmatnia, F ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Herein, we report the synthesis, characterization and combined structural and full computational analysis of noncovalent interactions in a new hydrazine ligand and its two chlorido- and endo-nitrito-rhenium(I) tricarbonyl complexes. The analysis of crystal structures has been accompanied by comprehensive computational studies of the noncovalent interactions utilizing the quantum theory of atoms in molecules (QTAIM), natural bond orbitals (NBO), independent gradient model (IGM), and electron localization function (ELF) to shed light on the nature of the interactions. On the other hand, comprehensive energy decomposition analysis (EDA) by extended transition state coupled with natural orbitals... 

    2D MXene nanocomposites: electrochemical and biomedical applications

    , Article Environmental Science: Nano ; Volume 9, Issue 11 , 2022 , Pages 4038-4068 ; 20518153 (ISSN) Ramezani Farani, M ; Nourmohammadi Khiarak, B ; Tao, R ; Wang, Z ; Ahmadi, S ; Hassanpour, M ; Rabiee, M ; Saeb, M. R ; Lima, E. C ; Rabiee, N ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    In recent years, key questions about the interaction of 2D MXene nanomaterials in electrochemical and biomedical applications have been raised. Most research has focused on clarifying the exclusive properties of the materials; however, only limited reports have described the biomedical applications of 2D nanomaterials. 2D MXenes are monolayer atomic nanosheets resulting from MAX phase ceramics. The hydrophilic properties, metallic conductivity, stability, and exclusive physiochemical performances make them promising materials for electrochemical and biomedical applications, including CO2 reduction, H2 evolution, energy conversion and storage, supercapacitors, stimuli-responsive drug delivery... 

    Efficient post-plasma catalytic degradation of toluene via series of Co–Cu/TiO2 catalysts

    , Article Research on Chemical Intermediates ; Volume 48, Issue 10 , 2022 , Pages 4227-4248 ; 09226168 (ISSN) Ayub, K. S ; Zaman, W. Q ; Miran, W ; Ali, M ; Abbas, Z ; Mushtaq, U ; Shahzad, A ; Yang, J ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Volatile organic compounds (VOCs) represent a very important class of pollutants that causes serious health effects. There is an urgent requirement to establish efficient technologies that can reduce and control VOCs. Non-thermal plasma (NTP) is an emerging technology that can decompose low concentration VOCs. However, the low efficiency and high power cost are major hindrances in its commercialization. In this work, Co–Cu with TiO2 support catalysts are prepared by using the deposition precipitation method and utilized in post-plasma catalysis for the efficient degradation of toluene selected as a model VOC. The synergistic effect of Co–Cu/TiO2 with different Co/Cu molar ratios along with... 

    Friction reduction in grafted carbon nanochannels by applying an electric field

    , Article Computational Materials Science ; Volume 213 , 2022 ; 09270256 (ISSN) Saleki, O ; Moosavi, A ; Hannani, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Water can be pumped in nanochannels by limiting it between the surfaces with different hydrophobicities and exerting a spinning electric field. The asymmetrical hydrophobicity combined with the spinning electric field and the fact that the water molecules have a dipole moment create a situation in which the angular momentum of water molecules is transformed into a linear momentum and the water is pumped into the nanochannel. The hydrophobicity of the surfaces can be manipulated by using nanostructures to reduce friction. In this study, two types of nanostructures have been used which are hierarchical nanostructures and polymer nanostructures made of Poly(N-isopropylacrylamide). The walls of... 

    Plasma-enhanced chemical vapor deposition for fabrication of yolk-shell SnO2@Void@C nanowires, as an efficient carbon coating technique for improving lithium-ion battery performance

    , Article Materials Science in Semiconductor Processing ; Volume 149 , 2022 ; 13698001 (ISSN) Habibi, A ; Mousavi, M. R ; Yasoubi, M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This manuscript describes the implementation of plasma-enhanced chemical vapor deposition (DC-PECVD) and vapor-liquid-solid (VLS) techniques to fabricate a yolk-shell SnO2@Void@C nanowire (NW) structure. SnO2 nanowires have been synthesized on the stainless steel mesh substrate through the VLS method. The PECVD-assisted growth of carbon nanolayer on the SnO2 and SiO2 coated SnO2 NWs has been performed to fabricate SnO2@C core-shell and SnO2@SiO2@C yolk-shell structures, respectively. A consequent silica etching process converted the SnO2@SiO2@C into SnO2@Void@C structure. The electrochemical performance of bare SnO2 NWs, SnO2 NWs @ C, and SnO2 @Void @ C coaxial NWs structures have been... 

    Electrochemical and computational studies of bio-mimicked Ti3C2Tx MXene-based sensor with multivalent interface

    , Article Journal of Colloid and Interface Science ; Volume 623 , 2022 , Pages 1063-1074 ; 00219797 (ISSN) Ranjbar, S ; Ashari Astani, N ; Atabay, M ; Naseri, N ; Esfandiar, A ; Reza Ejtehadi, M ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Two-dimensional MXenes are the newly emerging family of nanomaterials with competitive performance for nano-device development. Surface functional groups and abundant binding sites make these materials ideal candidates for sensor applications. Herein, we report the successful fabrication of a MXene-based nano-bio device for capturing, sensing, and filtering the Escherichia coli (E. coli) bacteria. Mannose carbohydrate, which binds strongly to E.coli's fimH protein via glucan multivalent interactions, is used as the bio-receptor element. MXene's structure was engineered to guarantee efficient E. coli capturing without mannose detachment. Electrochemical impedance spectroscopy (EIS) and cyclic... 

    Composite of methyl polysiloxane and avocado biochar as adsorbent for removal of ciprofloxacin from waters

    , Article Environmental Science and Pollution Research ; Volume 29, Issue 49 , 2022 , Pages 74823-74840 ; 09441344 (ISSN) Teixeira, R. A ; Lima, E. C ; Benetti, A. D ; Thue, P. S ; Lima, D. R ; Sher, F ; dos Reis, G. S ; Rabiee, N ; Seliem, M. K ; Abatal, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Two carbon composite materials were prepared by mixing avocado biochar and methyl polysiloxane (MK). Firstly, MK was dissolved in ethanol, and then the biochar was added at different times. In sample 1 (R1), the time of adding biochar was immediately after dissolving MK in ethanol, and in sample 2 (R2), after 48 h of MK dissolved in ethanol. The samples were characterized by nitrogen adsorption/desorption measurements obtaining specific surface areas (SBET) of 115 m2 g−1 (R1) and 580 m2 g−1 (R2). The adsorbents were further characterized using scanning electron microscopy, FTIR and Raman spectroscopy, adsorption of vapors of n-heptane and water, thermal analysis, Bohem titration, pHpzc, and... 

    Extraction and purification of phosphatidylcholine and its potential in nanoliposomal delivery of Eucalyptus citriodora oil

    , Article Canadian Journal of Chemical Engineering ; Volume 100, Issue 10 , 2022 , Pages 2807-2814 ; 00084034 (ISSN) Bahari, M ; Vaziri, A. S ; Alemzadeh, I ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Phosphatidylcholine (PC) possesses amphiphilic characteristics to form vesicles or liposome nanoparticles and can be utilized to deliver essential nutrients such as proteins, peptide antigens, and essential fatty acids. In this study, an attempt has been made to obtain purified PC and evaluate its potential in nanoliposome synthesis and its corresponding drug release profile. In this regard, four physical separation techniques comprising extraction, precipitation, static, and dynamic adsorption were assessed and applied to purify PC from soybean lecithin. Different solvents and the ratio of lecithin to solvent were used to achieve the highest PC percentage. The results of an HPLC test showed... 

    Chromogenic detection of xylene isomers and luminogenic chemosensing of o-xylene employing a new macrocyclic cobalt complex: synthesis, and X-ray crystallographic, spectroscopic and computational studies

    , Article New Journal of Chemistry ; Volume 46, Issue 43 , 2022 , Pages 20745-20754 ; 11440546 (ISSN) Ghanbari, B ; Asadi Mofarrah, L ; Jamjah, A ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Here, we report the synthesis and characterization of a binuclear Co(ii) complex (Co2(2py)2Cl4) with two dinaphtho-diazacrown ether macrocyclic ligands, bearing two pyridine arms as a colourimetric and fluorescent sensor for detecting different xylene isomers as well as acting as a catalyst for the oxidation of o- and m-xylene under vacuum at room temperature. Chromogenic detection occurred when Co2(2py)2Cl4 was exposed to the xylene isomers, wherein the original blue colour of the complex changed to green and green-blue in the presence of o- and m-xylene, respectively. Meanwhile, no colour change was observed in the presence of the p-xylene isomer. Fluorescence spectroscopy revealed that... 

    Exploitation of n-gene of sars-cov-2 to develop a new rapid assay by ASOs@AuNPs

    , Article Analytical Chemistry ; Volume 94, Issue 39 , 2022 , Pages 13616-13622 ; 00032700 (ISSN) Borghei, Y. S ; Samadikhah, H. R ; Hosseinkhani, S ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    A naked-eye (equipment-free), label-free (cost-effective), and RNA extraction-free (to speed up) method for SARS-CoV-2 (as a case study of RNA viruses) detection is developed. Here, the DNA is being used as a template for in situ formation of anisotropic gold nanoparticles (AuNPs) without any chemical modification or DNA labeling. In this study, synthesized AuNPs for the direct detection of N-gene (nucleocapsid phosphoprotein) of SARS-CoV-2 are exploited. To this aim, antisense oligonucleotides (ASOs) with an extra poly guanine tail (G12) were designed. Thus, in the presence of its viral target RNA gene and ASOs@AuNPs-RNA hybridization, there was a red shift in its localized surface plasmon... 

    Water treatment using stimuli-responsive polymers

    , Article Polymer Chemistry ; Volume 13, Issue 42 , 2022 , Pages 5940-5964 ; 17599954 (ISSN) Abousalman Rezvani, Z ; Roghani Mamaqani, H ; Riazi, H ; Abousalman Rezvani, O ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Water treatment is a process used to eliminate or reduce chemical and biological contaminants that are potentially harmful to the water supply for human use. Stimuli-responsive polymers are a new category of smart materials used in water treatment via a stimuli-induced purification process and subsequent regeneration of the polymers. Stimuli-responsive polymers dynamically change their physico-chemical properties upon environmental changes. They can undergo shrinkage or expansion, alter their optical properties, and change their electrical characteristics depending on the applied stimuli. In this context, various stimuli-responsive polymer systems such as self-assembled nanostructures,... 

    Radiopaque crystalline, non-crystalline and nanostructured bioceramics

    , Article Materials ; Volume 15, Issue 21 , 2022 ; 19961944 (ISSN) Montazerian, M ; Gonçalves, G. V. S ; Barreto, M. E. V ; Lima, E. P. N ; Cerqueira, G. R. C ; Sousa, J. A ; Malek Khachatourian, A ; Souza, M. K. S ; Silva, S. M. L ; Fook, M. V. L ; Baino, F ; Sharif University of Technology
    MDPI  2022
    Abstract
    Radiopacity is sometimes an essential characteristic of biomaterials that can help clinicians perform follow-ups during pre- and post-interventional radiological imaging. Due to their chemical composition and structure, most bioceramics are inherently radiopaque but can still be doped/mixed with radiopacifiers to increase their visualization during or after medical procedures. The radiopacifiers are frequently heavy elements of the periodic table, such as Bi, Zr, Sr, Ba, Ta, Zn, Y, etc., or their relevant compounds that can confer enhanced radiopacity. Radiopaque bioceramics are also intriguing additives for biopolymers and hybrids, which are extensively researched and developed nowadays for... 

    Conventional vs. temperature-gradient transient liquid phase bonding of stainless steel 304 using a multi-component (Fe–Ni–Mo–B) filler metal

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 53, Issue 11 , 2022 , Pages 4081-4100 ; 10735623 (ISSN) Jabbari, F ; Ekrami, A ; Sharif University of Technology
    Springer  2022
    Abstract
    The application of the multi-component Fe-based filler metals (FMs) for transient liquid phase (TLP) bonding of AISI 304 austenitic stainless steel has been overshadowed by dissimilar interlayers merely due to their shorter isothermal solidification time. However, the latter usually suffers from low efficiency in terms of mechanical properties even after homogenization of heat treatment. This study shows that by imposing a temperature gradient across the bond line during the TLP bonding process (TG-TLP), it is possible to reduce the isothermal solidification time significantly. This renews the interest in utilizing multi-component Fe-based FMs. In this regard, the TG-TLP bonding process was... 

    In situ polymerization of curcumin incorporated polyurethane/zinc oxide nanocomposites as a potential biomaterial

    , Article Reactive and Functional Polymers ; Volume 180 , 2022 ; 13815148 (ISSN) Shah, S. A. A ; Athir, N ; Shehzad, F. K ; Cheng, J ; Gao, F ; Zhang, J ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Curcumin incorporated polyurethanes (CPU) are gaining much attention as a biomaterial. However, challenges are still remained due to hydrophobicity and low mechanical strength of CPU. Herein, we synthesized the CPU/ZnO nanocomposites with good mechanical and improved hydrophilic properties via in-situ polymerization. A series of curcumin incorporated polyurethane with different concentrations of ZnO nanoparticles (ZnCPU) are synthesized by using the curcumin, polyethylene glycol (PEG) as the soft segment, hexamethylene diisocyanate (HDI) as the hard segment, and 1,4-butanediol (BDO) as the chain extender. The addition of ZnO nanoparticles (NPs) facilitated the soft domain of PU which is... 

    Magneto-fluorescent contrast agents based on carbon Dots@Ferrite nanoparticles for tumor imaging

    , Article Journal of Magnetism and Magnetic Materials ; Volume 561 , 2022 ; 03048853 (ISSN) Mohandes, F ; Dehghani, H ; Angizi, S ; Ramedani, A ; Dolatyar, B ; Ramezani Farani, M ; Müllen, K ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Bimodal magnetic-fluorescent materials for diagnostic imaging needs surface-engineered nanoparticles with great biosafety, pronounced colloidal stability, high magnetic moments, and strong photoluminescence (PL) emission. This work presents polymer-coated nanoparticles (PCNPs) based on manganese ferrites covered with a thin shell of nitrogen-doped carbon dots for magnetic-resonance and fluorescent dual mode imaging of cancerous tumors in vivo. An in situ thermolysis of metal oxalates and phenylenediamine in diphenyl ether allows for the facile synthesis of hybrid magneto-fluorescent nanoparticles. They possess an average size of 55 ± 5 nm with strong and excitation-independent PL emission at... 

    Ruthenium/Ruthenium oxide hybrid nanoparticles anchored on hollow spherical Copper-Cobalt Nitride/Nitrogen doped carbon nanostructures to promote alkaline water splitting: Boosting catalytic performance via synergy between morphology engineering, electron transfer tuning and electronic behavior modulation

    , Article Journal of Colloid and Interface Science ; Volume 626 , 2022 , Pages 1070-1084 ; 00219797 (ISSN) Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Exploring bi-functional electrocatalysts with excellent activity, good durability, and cost-effectiveness for electrochemical hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte is a critical step towards a sustainable hydrogen economy. Three main features such as high density of active sites, improved charge transfer, and optimized electronic configuration have positive effects on the electrocatalyst activity. In this context, understanding structure–composition–property relationships and catalyst activity is very important and highly desirable. Herein, for the first time, we present the design and fabrication of novel MOF-derived ultra-small Ru/RuO2 nanoparticles...