Loading...
Search for: chemical-industry
0.006 seconds
Total 37 records

    Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials

    , Article Journal of Chemical Technology and Biotechnology ; Volume 97, Issue 7 , 2022 , Pages 1640-1654 ; 02682575 (ISSN) Rabiee, N ; Ahmadi, S ; Soufi, G. J ; Hekmatnia, A ; Khatami, M ; Fatahi, Y ; Iravani, S ; Varma, R. S ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity,... 

    Applications of the quartz crystal microbalance in energy and environmental sciences: From flow assurance to nanotechnology

    , Article Fuel ; Volume 313 , 2022 ; 00162361 (ISSN) Roshani, M. M ; Rostaminikoo, E ; Joonaki, E ; Mirzaalian Dastjerdi, A ; Najafi, B ; Taghikhani, V ; Hassanpouryouzband, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In the last decade, there has been a swift development in several scientific research works in which the quartz crystal microbalance (QCM) technique has played a critical role in unravelling different aspects of energy and environmental materials and biological substances as well as all corresponding molecular interactions within those media. We comprehensively review the numerous types of surface chemistries, including but not limited to hydrogen bonding, hydrophobic and electrostatic interactions, self-assembled monolayers and ionic bonding, that are monitored using QCMs in a variety of fields such as energy and chemical industries in addition to the biology, medicine and nanotechnology... 

    Optimizing temperature and introducing new process arrangements for elevating clay's longevity based on the known poisons in the separation process of trace olefins from aromatics

    , Article Journal of Chemical Technology and Biotechnology ; Volume 97, Issue 4 , 2022 , Pages 973-983 ; 02682575 (ISSN) Rouhani, H ; Farhadi, F ; Akbari Kenari, M ; Ramakrishna, S ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    BACKGROUND: The clay treatment widely utilized to reduce unsaturated components in aromatic stream has a detrimental effect on catalyst lifetime. Due to the short lifetime of commercial clay, a huge number of studies have been carried out to address this problem over the last decade. This study aims to optimize the temperature for longer serviceability of clay by removal of unsaturated aliphatic components from aromatic streams through the adsorption and catalytic properties of clay. A novel process arrangement is introduced by scheduling the reuse of deactivated clay that is discarded after deactivation. RESULTS: Results showed that the suitable range of temperature for olefin removal is... 

    A unified benchmark for security and reliability assessment of the integrated chemical plant, natural gas and power transmission networks

    , Article Journal of Natural Gas Science and Engineering ; Volume 96 , 2021 ; 18755100 (ISSN) Kheirkhah Ravandi, Z ; Bozorgmehry Boozarjomehry, R ; Babaei, F ; Pishvaie, M. R ; Sharif University of Technology
    Elsevier B. V  2021
    Abstract
    This work presents a simulation framework to investigate the rigorous transient behavior of integrated systems comprising natural gas and power transmission networks, and a chemical plant whose feedstock is natural gas. This framework entails dynamic models for the gas transmission network and the SynGas plant, and a continuous-time AC-power flow formulation with dispatchable loads. It addresses the following key challenges: (i) analyzing energy and chemical system interdependencies, and their impacts on each other's supply reliability and security; (ii) providing an environment conducive to settling a critical question of how to prioritize the natural gas consumption as fuels of power... 

    Seismic response and failure modes of steel silos with isotropic stepped walls: The effect of vertical component of ground motion and comparison of buckling resistances under seismic actions with those under wind or discharge loads

    , Article Engineering Failure Analysis ; Volume 120 , 2021 ; 13506307 (ISSN) Mehretehran, A. M ; Maleki, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Steel silos are one of the main structures for bulk solids handling and storage in many industries and agricultural sectors. A growing body of research suggests the importance of including the vertical component of earthquake ground motion in seismic analysis and design of certain structures. In the case of steel silos, this may induce additional meridional compression to exacerbate buckling failures in such thin shells. Accordingly, this paper investigates the buckling behavior of three cylindrical steel silos (i.e., a squat, an intermediate slender and a slender silo) with stepped walls subjected to horizontal only (H) and horizontal and vertical (HV) ground accelerations to address this... 

    Seedless growth of two-dimensional disc-shaped WS2 layers by chemical vapor deposition

    , Article Materials Chemistry and Physics ; Volume 257 , 2021 ; 02540584 (ISSN) Rahmani Taji Boyuk, M.R ; Ghanbari, H ; Simchi, A ; Maghsoumi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Chemical processing of two-dimensional (2D) transition metal dichalcogenides has attracted immense attention due to their unique optical, electrical, and catalytic properties. In this paper, we show that under special conditions during seedless chemical vapor deposition (CVD), it is possible to grow large-area 2D WS2 layers with disc-shaped morphology, which has been scarcely reported. Detailed characterizations of the CVD-grown layers by Raman spectroscopy, atomic force microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy have revealed that a gradient in the precursor concentration in the gas phase and strain energy in the deposited hexagonal clusters favor... 

    Optimizing temperature and introducing new process arrangements for elevating clay's longevity based on the known poisons in the separation process of trace olefins from aromatics

    , Article Journal of Chemical Technology and Biotechnology ; 2021 ; 02682575 (ISSN) Rouhani, H ; Farhadi, F ; Akbari Kenari, M ; Ramakrishna, S ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    BACKGROUND: The clay treatment widely utilized to reduce unsaturated components in aromatic stream has a detrimental effect on catalyst lifetime. Due to the short lifetime of commercial clay, a huge number of studies have been carried out to address this problem over the last decade. This study aims to optimize the temperature for longer serviceability of clay by removal of unsaturated aliphatic components from aromatic streams through the adsorption and catalytic properties of clay. A novel process arrangement is introduced by scheduling the reuse of deactivated clay that is discarded after deactivation. RESULTS: Results showed that the suitable range of temperature for olefin removal is... 

    Comparison among various configurations of hybrid distillation–membrane setups for the energy efficiency improvement of bioethanol distillery: a simulation study

    , Article Journal of Chemical Technology and Biotechnology ; October , 2021 ; 02682575 (ISSN) Iftikhar, S ; Aslam, Z ; Ali, U ; Akhtar, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    BACKGROUND: Hybrid distillation–membrane setups have attracted attention in recent years due to their lower energy usage for ethanol purification. Membrane separation processes operate without heating that reduces energy demand. However, it is somewhat challenging to select the optimal material and process for a membrane purifying ethanol, especially to get an ethanol purity of 99.99% with maximum recovery. RESULTS: In this study, three different configurations of hybrid distillation–membrane setups are proposed consisting of distillation–pervaporation/vapor permeation processes by considering ceramic, polymeric and composite membranes. The design of hybrid processes is performed by coupling... 

    Glucose cross-linked hydrogels conjugate HA nanorods as bone scaffolds: Green synthesis, characterization and in vitro studies

    , Article Materials Chemistry and Physics ; Volume 242 , 2020 Mazaheri Karvandian, F ; Shafiei, N ; Mohandes, F ; Dolatyar, B ; Zandi, N ; Zeynali, B ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the expanding field of tissue engineering (TE), improvement of biodegradability and osteoconductivity of biomaterials are required. The use of non-toxic reagents during manufacturing processes is also necessary to decrease toxicity and increase cell viability in vivo. Herein, we present a novel approach to prepare hydroxyapatite (HA) nanorods from sea bio-wastes through a green and eco-friendly wet-chemical processing for bone TE. Highly porous natural polymer-ceramic nanocomposites made of HA, gelatin (Ge) and carboxymethyl cellulose (CMC) hydrogels are then introduced. It was found that cross-linking of the hydrogel matrix by glucose as a green reagent affected all characteristics of... 

    Exploring contraction–expansion inertial microfluidic-based particle separation devices integrated with curved channels

    , Article AIChE Journal ; Volume 65, Issue 11 , 2019 ; 00011541 (ISSN) Shamloo, A ; Abdorahimzadeh, S ; Nasiri, R ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    Separation of particles or cells has various applications in biotechnology, pharmaceutical and chemical industry. Inertial cell separation, in particular, has been gaining a great attention in the recent years since it has exhibited a label-free, high-throughput and efficient performance. In this work, first, an inertial contraction–expansion array microchannel device, capable of passively separating two particles with diameters of 4 and 10 μm, was numerically studied. Then, the validated model was combined with curved geometries in order to investigate the effect of curve features on the separation process. The overall purpose was to investigate the interaction between the two different... 

    3D buckling assessment of cylindrical steel silos of uniform thickness under seismic action

    , Article Thin-Walled Structures ; Volume 131 , 2018 , Pages 654-667 ; 02638231 (ISSN) Moazezi Mehretehran, A ; Maleki, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper investigates the dynamic buckling behavior of steel silos subjected to horizontal base excitations. The elastic-plastic buckling resistance of three silos with different aspect ratios is estimated using Incremental Dynamic Analyses (IDA). Accordingly, the critical base shear, base moment and the peak ground acceleration (PGA) at the buckling instant are calculated. Moreover, the additional normal pressures induced from bulk solids on silo walls are evaluated and compared with those of Eurocode 8. The results obtained suggest that slender silos are more vulnerable to buckling failure, while squatter silos represent a considerably higher resistance under same seismic conditions. ©... 

    Energy consumption in pervaporation, conventional and hybrid processes to separate toluene and i-octane

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 128 , June , 2018 , Pages 46-52 ; 02552701 (ISSN) Khazaei, A ; Mohebbi, V ; Mosayyebi Behbahani, R ; Ramazani Saadat Abadi, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Chemical industries need to employ new process designs due to environmental policies and energy optimization because of the global energy challenge. Pervaporation has been introduced as a promising alternative for conventional processes such as distillation, known as energy intensive process, in chemical plants. In this work, the energy consumption of different processes for separation of toluene and i-octane (representatives of aromatics and aliphatic mixtures) has been evaluated, based on our previous laboratory pervaporation experiments using Polyvinyl alcohol/Graphene oxide mixed matrix membranes. Accordingly, hybrid distillation-pervaporation and cascade pervaporation systems have been... 

    Fabrication of sintered porous polymeric materials: effect of chain interdiffusion time on mechanical properties

    , Article Polymer International ; Volume 67, Issue 4 , 2018 , Pages 422-430 ; 09598103 (ISSN) Salari, M ; Pircheraghi, G ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    In this study, sintered porous polymeric materials made of high density polyethylene (HDPE) were fabricated through controlling the chain interdiffusion time at the transition temperature of semicrystalline and melt states. At this intermediate state, where both crystalline and amorphous phases coexist, the interfacial welding of HDPE particles is facilitated thanks to interdiffusion caused by chain relaxation phenomena. Then, by assuming a spherical shape and a cubic packing configuration of particles, a geometrical model was developed to predict porosity variations as sintering progresses. Moreover, the HDPE used, as a broad molecular weight distributed polymer, has different family chains... 

    Facile synthesis of NiTiO3 yellow nano-pigments with enhanced solar radiation reflection efficiency by an innovative one-step method at low temperature

    , Article Dyes and Pigments ; Volume 139 , 2017 , Pages 388-396 ; 01437208 (ISSN) Moghtada, A ; Shahrouzianfar, A ; Ashiri, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Inorganic NiTiO3 nano-pigments have received recent attentions as possible candidates for cool materials to be used in building roofs and facades. In this paper, we have attempted to develop an innovative low temperature pathway (processed at 50 °C) for obtaining NiTiO3 nanocrystals by an ultrasound-assisted wet chemical processing method. Different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS) were used in order to characterize the size, morphology and optical responses of the obtained NiTiO3... 

    High-purity hydrogen production with in situ CO2 capture based on biomass gasification

    , Article Fuel ; Volume 202 , 2017 , Pages 29-35 ; 00162361 (ISSN) Doranehgard, M. H ; Samadyar, H ; Mesbah, M ; Haratipour, P ; Samiezade, S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Tar formation and CO2 emission represent the strongest barrier for use of gasification technology for biomass conversion, whereas sufficing for both is only possible with expensive physical methods and further chemical processing. The use of CaO as a CO2 sorbent within an advanced high-temperature gasification system is able to achieve efficient cracking of the tars to the primary syngas with low emissions. The present work aims to propose a semi-kinetic model on the basis of an Aspen Plus model to describe specific catalytic behavior of calcium oxide on the gasification of rice husk. There has also been an attempt to validate the developed model by means of an experimental study and explore... 

    Techno-economic comparative study on hydrogen and electricity cogeneration systems with CO2 capture

    , Article ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, 26 June 2016 through 30 June 2016 ; Volume 1 , 2016 ; 9780791850220 (ISBN) Zohrabian, A ; Soltanieh, M ; Mansouri Majoumerd, M ; Arild, Ø ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    In order to achieve the international climate goals and to keep the global temperature increase below 2 °C, carbon capture and storage in large point sources of CO2 emissions has received considerable attention. In recent years, mitigation of CO2 emissions from the power sector has been studied extensively whereas other industrial point source emitters such as hydrogen industry have also great potential for CO2 abatement. This study aims to draw an updated comparison between different hydrogen and power cogeneration systems using natural gas and coal as feedstock. The goal is to show the relative advantage of cogeneration systems with respect to CO2 emission reduction costs. Accordingly, the... 

    Effect of connectivity misrepresentation on accuracy of upscaled models in oil recovery by CO2 injection

    , Article Greenhouse Gases: Science and Technology ; Volume 6, Issue 3 , 2016 , Pages 339-351 ; 21523878 (ISSN) Ganjeh Ghazvini, M ; Masihi, M ; Baghalha, M ; Sharif University of Technology
    Blackwell Publishing Ltd  2016
    Abstract
    An upscaling method such as renormalization converts a detailed geological model to a coarse one. Although flow equations can be solved faster on a coarse model, its results have more errors. Numerical dispersion, heterogeneity loss, and connectivity misrepresentation are the factors responsible for errors. Connectivity has a great effect on the fluid distribution and leakage pathways in EOR processes or CO2 storage. This paper deals with the description and quantification of connectivity misrepresentation in the upscaling process. For detection of high-flow regions, the flow equations are solved under simplified single-phase conditions. These regions are recognized as the cells whose fluxes... 

    Facile synthesis of NiTiO3 yellow nano-pigments with enhanced solar radiation reflection efficiency by an innovative one-step method at low temperature

    , Article Dyes and Pigments ; Volume 123 , 2015 , Pages 92-99 ; 01437208 (ISSN) Moghtada, A ; Shahrouzianfar, A ; Ashiri, R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract Inorganic NiTiO3 nano-pigments have received recent attentions as possible candidates for cool pigment materials to be used in building roofs and facades. In this paper, we have attempted to develop an innovative low temperature (50 °C) synthesis pathway for obtaining NiTiO3 nanocrystals based on an ultrasound-assisted wet chemical processing method. The crystallite size, average particle size and band gap are found to be 11 nm, in the range of 10-20 nm and 3.72 eV, respectively. Ultraviolet-visible (UV-vis) reflectance spectra show that NiTiO3 nanoparticles have a high reflection peak at ∼580 nm, which is associated with the brilliant yellow color... 

    Nanostructured aluminium titanate (Al2TiO5) particles and nanofibers: Synthesis and mechanism of microstructural evolution

    , Article Materials Characterization ; Volume 103 , 2015 , Pages 125-132 ; 10445803 (ISSN) Azarniya, A ; Azarniya, A ; Madaah Hosseini, H. R ; Simchi, A ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    Abstract In this study, aluminium titanate (AT) particles and nanofibers were synthesized through citrate sol gel and sol gel-assisted electrospinning methods in both nanostructured powder and nanofiber forms. The results of X-ray diffraction analysis, field-emission scanning electron microscopy and differential thermal analysis showed that the synthetic products benefit a nanostructured nature with a grain size less than 70 nm. The optimal values for time and temperature at which a roughly pure AT is attained were determined as 2 h and 900 C, respectively. It was found that the sol gel precursor bears an amorphous structure till 700 C and begins to be crystallized to alumina, anatase and AT... 

    Risk assessment of vapor cloud explosions in a hydrogen production facility with consequence modeling

    , Article Journal of Research in Health Sciences ; Volume 13, Issue 2 , 2013 , Pages 181-187 ; 16822765 (ISSN) Zarei, E ; Jafari, M. J ; Badri, N ; Sharif University of Technology
    2013
    Abstract
    Background: New technologies using hazardous materials usually have certain risks. It is more serious when the technology is supposed to be applied in a large scale and become widely used by many people. The objective of this paper was to evaluate the risk of vapor cloud explosion in a hydrogen production process. Methods: Potential hazards were identified using the conventional hazard identification method (HAZID). The frequency of the proposed scenarios was estimated from statistical data and existing records. The PHAST professional software was applied for consequence modeling. Both individual and societal risks were evaluated. This cross-sectional study was conducted from June 2010 to...