Loading...
Search for: chemical-industry
0.007 seconds
Total 37 records

    Techno-economic comparative study on hydrogen and electricity cogeneration systems with CO2 capture

    , Article ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, 26 June 2016 through 30 June 2016 ; Volume 1 , 2016 ; 9780791850220 (ISBN) Zohrabian, A ; Soltanieh, M ; Mansouri Majoumerd, M ; Arild, Ø ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    In order to achieve the international climate goals and to keep the global temperature increase below 2 °C, carbon capture and storage in large point sources of CO2 emissions has received considerable attention. In recent years, mitigation of CO2 emissions from the power sector has been studied extensively whereas other industrial point source emitters such as hydrogen industry have also great potential for CO2 abatement. This study aims to draw an updated comparison between different hydrogen and power cogeneration systems using natural gas and coal as feedstock. The goal is to show the relative advantage of cogeneration systems with respect to CO2 emission reduction costs. Accordingly, the... 

    Simulation and designing of methanol production plant based on the synthesis gas

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Babazadeh, F ; Haddadi, A. M ; Kazemini, M ; Sharif University of Technology
    2006
    Abstract
    Regarding the energy and environment crisis in the current century and future that threatens human communities, necessity of study and use of supplement fuels is felt more than before. Consumption of natural gas has been increasing rapidly making it one of the most important energy resources in the world. During the last decade the consumption of natural gas increased by almost 25%. By 2020 natural gas is predicted to increase its world energy share to as much as 50% from the present of 22%. The scale of its reserves and its environmental advantage favor its use, (the lower carbon emissions compared to oil and coal along with other reduced emissions of nitrogen oxides and particulates) for... 

    Seismic response and failure modes of steel silos with isotropic stepped walls: The effect of vertical component of ground motion and comparison of buckling resistances under seismic actions with those under wind or discharge loads

    , Article Engineering Failure Analysis ; Volume 120 , 2021 ; 13506307 (ISSN) Mehretehran, A. M ; Maleki, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Steel silos are one of the main structures for bulk solids handling and storage in many industries and agricultural sectors. A growing body of research suggests the importance of including the vertical component of earthquake ground motion in seismic analysis and design of certain structures. In the case of steel silos, this may induce additional meridional compression to exacerbate buckling failures in such thin shells. Accordingly, this paper investigates the buckling behavior of three cylindrical steel silos (i.e., a squat, an intermediate slender and a slender silo) with stepped walls subjected to horizontal only (H) and horizontal and vertical (HV) ground accelerations to address this... 

    Seedless growth of two-dimensional disc-shaped WS2 layers by chemical vapor deposition

    , Article Materials Chemistry and Physics ; Volume 257 , 2021 ; 02540584 (ISSN) Rahmani Taji Boyuk, M.R ; Ghanbari, H ; Simchi, A ; Maghsoumi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Chemical processing of two-dimensional (2D) transition metal dichalcogenides has attracted immense attention due to their unique optical, electrical, and catalytic properties. In this paper, we show that under special conditions during seedless chemical vapor deposition (CVD), it is possible to grow large-area 2D WS2 layers with disc-shaped morphology, which has been scarcely reported. Detailed characterizations of the CVD-grown layers by Raman spectroscopy, atomic force microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy have revealed that a gradient in the precursor concentration in the gas phase and strain energy in the deposited hexagonal clusters favor... 

    Risk assessment of vapor cloud explosions in a hydrogen production facility with consequence modeling

    , Article Journal of Research in Health Sciences ; Volume 13, Issue 2 , 2013 , Pages 181-187 ; 16822765 (ISSN) Zarei, E ; Jafari, M. J ; Badri, N ; Sharif University of Technology
    2013
    Abstract
    Background: New technologies using hazardous materials usually have certain risks. It is more serious when the technology is supposed to be applied in a large scale and become widely used by many people. The objective of this paper was to evaluate the risk of vapor cloud explosion in a hydrogen production process. Methods: Potential hazards were identified using the conventional hazard identification method (HAZID). The frequency of the proposed scenarios was estimated from statistical data and existing records. The PHAST professional software was applied for consequence modeling. Both individual and societal risks were evaluated. This cross-sectional study was conducted from June 2010 to... 

    Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials

    , Article Journal of Chemical Technology and Biotechnology ; Volume 97, Issue 7 , 2022 , Pages 1640-1654 ; 02682575 (ISSN) Rabiee, N ; Ahmadi, S ; Soufi, G. J ; Hekmatnia, A ; Khatami, M ; Fatahi, Y ; Iravani, S ; Varma, R. S ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity,... 

    Quantitative risk assessment for accidental release of ethylene oxide from purification column of an ethylene oxide production unit

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Abdolhamidzadeh, B ; Hashemi, V ; Rashtchian, D ; Sharif University of Technology
    2006
    Abstract
    This paper outlines a quantitative risk assessment for an 110,000 ton/day ethylene oxide production plant in Iran. After a complete and detailed hazard identification study, done by HAZOP method, the purification column was found to be one of the most hazardous sections in this plant. As ethylene oxide with high concentration and inventory is present there. Fault tree analysis (FTA) technique has been used to identify the basic events responsible for top event occurrence and also calculation of top event frequency of occurrence. Human error has been calculated numerically and probability of human error has been estimated. Failure rate data were collected referring to several sources and... 

    Pressure and temperature functionality of paraffin-carbon dioxide interfacial tension using genetic programming and dimension analysis (GPDA) method

    , Article Journal of Natural Gas Science and Engineering ; Volume 20 , September , 2014 , Pages 407-413 ; ISSN: 18755100 Khadem, S. A ; Jahromi, I. R ; Zolghadr, A ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    A precise semi-empirical correlation for the calculation of interfacial tension (IFT) between the carbon dioxide and paraffin group to be used in an enhanced oil recovery process and the chemical industry is introduced. Genetic programming and dimension analysis (GPDA) are combined to create a correlation for the calculation of the equilibrium interfacial tension of the carbon dioxide and paraffin group, based on the explicit functionality of the pressure and temperature. The parameters of the correlation consist of critical temperature, critical pressure, density of paraffin at normal temperature, and diffusion coefficients. The pool of experimental data for developing the correlation... 

    Pilot plant and their rule in chemical industries

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Babazadeh, F ; Haddadi, A. M ; Kazemini, M ; Sharif University of Technology
    2006
    Abstract
    With regard to petrol, petrochemical and chemical industries extension in Iran and with regard to growth of agreements in these field and huge investment payments for different engineering activities and technology transfer, we need to evaluate each of these projects essentially and scientifically to reach the success. For this purpose we need to investigate the chain from science to market. On of the middle cycle of the chain are pilot plants, which have key rule for success of project. In this work after introducing pilot plant and explanation of their aims and characteristics, we allude the rule and situation of pilot plant for getting technology and transfer in chemical industries and... 

    Optimizing temperature and introducing new process arrangements for elevating clay's longevity based on the known poisons in the separation process of trace olefins from aromatics

    , Article Journal of Chemical Technology and Biotechnology ; 2021 ; 02682575 (ISSN) Rouhani, H ; Farhadi, F ; Akbari Kenari, M ; Ramakrishna, S ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    BACKGROUND: The clay treatment widely utilized to reduce unsaturated components in aromatic stream has a detrimental effect on catalyst lifetime. Due to the short lifetime of commercial clay, a huge number of studies have been carried out to address this problem over the last decade. This study aims to optimize the temperature for longer serviceability of clay by removal of unsaturated aliphatic components from aromatic streams through the adsorption and catalytic properties of clay. A novel process arrangement is introduced by scheduling the reuse of deactivated clay that is discarded after deactivation. RESULTS: Results showed that the suitable range of temperature for olefin removal is... 

    Optimizing temperature and introducing new process arrangements for elevating clay's longevity based on the known poisons in the separation process of trace olefins from aromatics

    , Article Journal of Chemical Technology and Biotechnology ; Volume 97, Issue 4 , 2022 , Pages 973-983 ; 02682575 (ISSN) Rouhani, H ; Farhadi, F ; Akbari Kenari, M ; Ramakrishna, S ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    BACKGROUND: The clay treatment widely utilized to reduce unsaturated components in aromatic stream has a detrimental effect on catalyst lifetime. Due to the short lifetime of commercial clay, a huge number of studies have been carried out to address this problem over the last decade. This study aims to optimize the temperature for longer serviceability of clay by removal of unsaturated aliphatic components from aromatic streams through the adsorption and catalytic properties of clay. A novel process arrangement is introduced by scheduling the reuse of deactivated clay that is discarded after deactivation. RESULTS: Results showed that the suitable range of temperature for olefin removal is... 

    Numerical investigation of droplets breakup in a microfluidic T-junction

    , Article Applied Mechanics and Materials ; Volume 110-116 , 2012 , Pages 3269-3277 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Bedram, A ; Moosavi, A ; Int. Assoc. Comput. Sci. Inf. Technol. (IACSIT) ; Sharif University of Technology
    2012
    Abstract
    A Volume of Fluid (VOF) method is used to stdy the breakup of droplets in T-junction geometries. Symmetric T-junctions, which are used to produce equal size droplets and have many applications in pharmacy and chemical industries, are considered. Two important factors namely "breakup time" and "breakup length" that can improve the performance of these systems have been introduced. In addition a novel system which consists of an asymmetric T-junction is proposed to produce unequal size droplets. The effects of the channel width ratio and the capillary number on the size and length of the generated droplets and also the time of the generation have been studied and discussed. For simulation the... 

    Nanostructured aluminium titanate (Al2TiO5) particles and nanofibers: Synthesis and mechanism of microstructural evolution

    , Article Materials Characterization ; Volume 103 , 2015 , Pages 125-132 ; 10445803 (ISSN) Azarniya, A ; Azarniya, A ; Madaah Hosseini, H. R ; Simchi, A ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    Abstract In this study, aluminium titanate (AT) particles and nanofibers were synthesized through citrate sol gel and sol gel-assisted electrospinning methods in both nanostructured powder and nanofiber forms. The results of X-ray diffraction analysis, field-emission scanning electron microscopy and differential thermal analysis showed that the synthetic products benefit a nanostructured nature with a grain size less than 70 nm. The optimal values for time and temperature at which a roughly pure AT is attained were determined as 2 h and 900 C, respectively. It was found that the sol gel precursor bears an amorphous structure till 700 C and begins to be crystallized to alumina, anatase and AT... 

    Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels

    , Article Polymer International ; Volume 62, Issue 7 , 2013 , Pages 1038-1044 ; 09598103 (ISSN) Pourjavadi, A ; Hosseini, S. H ; Seidi, F ; Soleyman, R ; Sharif University of Technology
    2013
    Abstract
    Magnetic Fe3O4@SiO2 starch-graft-poly(acrylic acid) (SPAA) nanocomposite hydrogels were prepared and used as absorbents for removal of crystal violet from aqueous solutions. Dynamic swelling, effect of contact time, absorption kinetics and nanocomposite hydrogel mass for removal of crystal violet dyes from aqueous solutions were studied. Fourier transform infrared spectroscopy, scanning electron microscopy and vibrating sample magnetometer measurements were used for the characterization of the nanocomposite hydrogels. The nanocomposite hydrogels had high magnetic sensitivity under an external magnetic field, which allowed their magnetic separation from water, thus avoiding secondary... 

    Low temperature synthesis of carbonate-free barium titanate nanoscale crystals: Toward a generalized strategy of titanate-based perovskite nanocrystals synthesis

    , Article Journal of the American Ceramic Society ; Vol. 97, issue. 7 , 2014 , pp. 2027-2031 Ashiri, R ; Moghtada, A ; Shahrouzianfar, A ; Ajami, R ; Sharif University of Technology
    Abstract
    Synthesis temperature and purity of perovskite materials are key challenges facing the scientific community. This work aims to address these challenges by developing an innovative low temperature synthesis pathway for preparation of carbonate-free perovskite nanocrystals. The method is based on an ultrasound-Assisted wet chemical processing method. Nanocrystals are characterized and observed by X-ray diffraction (XRD), field-emission scanning electron microscopy and high-resolution transmission electron microscopy techniques. XRD studies show that very fine BaTiO3 nanocrystals (<11 nm) free from any by-products such as BaTi2O5 and BaCO3 are synthesized at 50°C. Moreover, the method developed... 

    High-purity hydrogen production with in situ CO2 capture based on biomass gasification

    , Article Fuel ; Volume 202 , 2017 , Pages 29-35 ; 00162361 (ISSN) Doranehgard, M. H ; Samadyar, H ; Mesbah, M ; Haratipour, P ; Samiezade, S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Tar formation and CO2 emission represent the strongest barrier for use of gasification technology for biomass conversion, whereas sufficing for both is only possible with expensive physical methods and further chemical processing. The use of CaO as a CO2 sorbent within an advanced high-temperature gasification system is able to achieve efficient cracking of the tars to the primary syngas with low emissions. The present work aims to propose a semi-kinetic model on the basis of an Aspen Plus model to describe specific catalytic behavior of calcium oxide on the gasification of rice husk. There has also been an attempt to validate the developed model by means of an experimental study and explore... 

    Glucose cross-linked hydrogels conjugate HA nanorods as bone scaffolds: Green synthesis, characterization and in vitro studies

    , Article Materials Chemistry and Physics ; Volume 242 , 2020 Mazaheri Karvandian, F ; Shafiei, N ; Mohandes, F ; Dolatyar, B ; Zandi, N ; Zeynali, B ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the expanding field of tissue engineering (TE), improvement of biodegradability and osteoconductivity of biomaterials are required. The use of non-toxic reagents during manufacturing processes is also necessary to decrease toxicity and increase cell viability in vivo. Herein, we present a novel approach to prepare hydroxyapatite (HA) nanorods from sea bio-wastes through a green and eco-friendly wet-chemical processing for bone TE. Highly porous natural polymer-ceramic nanocomposites made of HA, gelatin (Ge) and carboxymethyl cellulose (CMC) hydrogels are then introduced. It was found that cross-linking of the hydrogel matrix by glucose as a green reagent affected all characteristics of... 

    Formation of Lanthanum hydroxide nanostructures: effect of NaOH and KOH solvents

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 169-176 ; 1728-144X (ISSN) Mazloumi, M ; Zanganeh, S ; Kajbafvala, A ; Shayegh, M. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Lanthanum hydroxide (La(OH)3) nanostructures, including elliptical nanoparticles, octahedral rods and irregular nanoparticles were prepared chemically in NaOH and KOH solutions with 10 M concentration. The obtained powders were characterized with XRD, SEM, TEM and DTA. Crystallinities, morphologies and thermal behavior of the obtained nanostructure powders were investigated under the influence of above mentioned solvents. The effect of chemical's temperature was also determined in one of the solvents (i.e. NaOH). The formation of growth in nanostructure mechanism under the influence of alkali solutions (i.e., KOH and NaOH) have been discussed considerably in this paper  

    Facile synthesis of NiTiO3 yellow nano-pigments with enhanced solar radiation reflection efficiency by an innovative one-step method at low temperature

    , Article Dyes and Pigments ; Volume 139 , 2017 , Pages 388-396 ; 01437208 (ISSN) Moghtada, A ; Shahrouzianfar, A ; Ashiri, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Inorganic NiTiO3 nano-pigments have received recent attentions as possible candidates for cool materials to be used in building roofs and facades. In this paper, we have attempted to develop an innovative low temperature pathway (processed at 50 °C) for obtaining NiTiO3 nanocrystals by an ultrasound-assisted wet chemical processing method. Different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS) were used in order to characterize the size, morphology and optical responses of the obtained NiTiO3... 

    Facile synthesis of NiTiO3 yellow nano-pigments with enhanced solar radiation reflection efficiency by an innovative one-step method at low temperature

    , Article Dyes and Pigments ; Volume 123 , 2015 , Pages 92-99 ; 01437208 (ISSN) Moghtada, A ; Shahrouzianfar, A ; Ashiri, R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract Inorganic NiTiO3 nano-pigments have received recent attentions as possible candidates for cool pigment materials to be used in building roofs and facades. In this paper, we have attempted to develop an innovative low temperature (50 °C) synthesis pathway for obtaining NiTiO3 nanocrystals based on an ultrasound-assisted wet chemical processing method. The crystallite size, average particle size and band gap are found to be 11 nm, in the range of 10-20 nm and 3.72 eV, respectively. Ultraviolet-visible (UV-vis) reflectance spectra show that NiTiO3 nanoparticles have a high reflection peak at ∼580 nm, which is associated with the brilliant yellow color...