Loading...
Search for: computer-codes
0.006 seconds
Total 30 records

    Optimization of the marinelli beaker dimensions using genetic algorithm

    , Article Journal of Environmental Radioactivity ; Volume 172 , 2017 , Pages 81-88 ; 0265931X (ISSN) Zamzamian, S. M ; Hosseini, S. A ; Samadfam, M ; Sharif University of Technology
    Abstract
    A computational code, based on the genetic algorithm and MCNPX version 2.6 code was developed and used to investigate the effects of some important parameters of HPGe detector (such as Al cap thickness, dead-layer thickness and Ge hole size) on optimum dimensions of marinelli beaker. In addition, the effects of detector material on optimal beaker dimensions were also investigated. Finally, the optimized beaker dimensions at various beaker volumes (300, 500, 700, 1000 and 1500 cm3) were determined for some conventional Ge detectors with different crystal sizes (16 sizes). These sets of data then were used to drive mathematical formulas (obtained by best fitting to data sets). The results... 

    Development of a 3-D multigroup program for Dancoff factor calculation

    , Article Annals of Nuclear Energy ; Volume 36, Issue 10 , 2009 , Pages 1486-1497 ; 03064549 (ISSN) Zahedinejad, E ; Vosoughi, N ; Sohrabpour, M ; Sharif University of Technology
    2009
    Abstract
    Several parameters, one of which is the Dancoff Factor (DF), are used to calculate the resonance integral (RI) and reduced flux in the resonance region of heterogeneous systems as well as to accurately determine the group constants for criticality calculations. This paper is a report on the development of a program to calculate the DF correction factor using Monte Carlo method and collision probability definition in three-dimensional (3-D) geometries and with multi energy groups. Hence, the DF for any arbitrary arrangement of cylindrical and slab fuel elements is hereby calculated. The fuel elements are monitored and kept at equal levels, though different material compositions and formations... 

    Straggler mitigation in distributed matrix multiplication: fundamental limits and optimal coding

    , Article IEEE Transactions on Information Theory ; Volume 66, Issue 3 , 2020 , Pages 1920-1933 Yu, Q ; Maddah Ali, M. A ; Avestimehr, A. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a group of worker nodes. We target the stragglers' delay performance bottleneck, which is due to the unpredictable latency in waiting for slowest nodes (or stragglers) to finish their tasks. We propose a novel coding strategy, named entangled polynomial code, for designing the intermediate computations at the worker nodes in order to minimize the recovery threshold (i.e., the number of workers that we need to wait for in order to compute the final output). We demonstrate the optimality of entangled polynomial code in several cases, and show... 

    Prediction of asphaltene precipitation during solvent/CO2 injection conditions: A comparative study on thermodynamic micellization model with a different characterization approach and solid model

    , Article Journal of Canadian Petroleum Technology ; Vol. 50, issue. 3 , March , 2011 , p. 65-74 Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    There are different thermodynamic models that have been applied for modelling of asphaltene precipitation caused by various reasons, such as solvent/CO2 injection and pressure depletion. In this work, two computer codes based on two different asphaltene precipitation thermodynamic models-the first being the thermodynamic micellization model with a different characterization approach and the second being the solid model-have been developed and used for predicting asphaltene precipitation data reported in the literature as well as in the obtained data for Sarvak reservoir crude, which is one of the most potentially problematic Iranian heavy oil reserves under gas injection conditions. For the... 

    Prediction of asphaltene precipitation during pressure depletion and CO2 injection for heavy crude

    , Article Petroleum Science and Technology ; Vol. 28, issue. 9 , Mar , 2009 , p. 892-902 ; ISSN: 10916466 Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. , H ; Sharif University of Technology
    Abstract
    In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir... 

    Prediction of asphaltene precipitation during solvent/CO2 injection conditions: A comparative study on thermodynamic micellization model with a different characterization approach and solid model

    , Article Journal of Canadian Petroleum Technology ; Volume 50, Issue 3 , 2011 , Pages 65-74 ; 00219487 (ISSN) Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    There are different thermodynamic models that have been applied for modelling of asphaltene precipitation caused by various reasons, such as solvent/CO2 injection and pressure depletion. In this work, two computer codes based on two different asphaltene precipitation thermodynamic models-the first being the thermodynamic micellization model with a different characterization approach and the second being the solid model-have been developed and used for predicting asphaltene precipitation data reported in the literature as well as in the obtained data for Sarvak reservoir crude, which is one of the most potentially problematic Iranian heavy oil reserves under gas injection conditions. For the... 

    Prediction of asphaltene precipitation during pressure depletion and CO2 injection for heavy crude

    , Article Petroleum Science and Technology ; Volume 28, Issue 9 , Apr , 2010 , Pages 892-902 ; 10916466 (ISSN) Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    2010
    Abstract
    In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir... 

    An improvement of thermodynamic micellization model for prediction of asphaltene precipitation during gas injection in heavy crude

    , Article Fluid Phase Equilibria ; Volume 308, Issue 1-2 , September , 2011 , Pages 153-163 ; 03783812 (ISSN) Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    Thermodynamic micellization model is known as an appropriate approach for prediction of asphaltene precipitation. However, the reliability (i.e. accuracy) of this model for whole range of pressure or injected gas mole percent must be checked. In practice, the accuracy can be improved by using a suitable characterization method. In this research, a computer code for implementing the thermodynamic micellization model has been developed. Having used this program, we make the prediction of asphaltene precipitation by using data reported in the literature as well as the experimental data obtained from high pressure, high temperature asphaltene precipitation experiments under gas injection... 

    A new neutron energy spectrum unfolding code using a two steps genetic algorithm

    , Article Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment ; Volume 811 , 2016 , Pages 82-93 ; 01689002 (ISSN) Shahabinejad, H ; Hosseini, S. A ; Sohrabpour, M ; Sharif University of Technology
    Elsevier 
    Abstract
    A new neutron spectrum unfolding code TGASU (Two-steps Genetic Algorithm Spectrum Unfolding) has been developed to unfold the neutron spectrum from a pulse height distribution which was calculated using the MCNPX-ESUT computational Monte Carlo code. To perform the unfolding process, the response matrices were generated using the MCNPX-ESUT computational code. Both one step (common GA) and two steps GAs have been implemented to unfold the neutron spectra. According to the obtained results, the new two steps GA code results has shown closer match in all energy regions and particularly in the high energy regions. The results of the TGASU code have been compared with those of the standard... 

    Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells

    , Article Renewable Energy ; Volume 41 , 2012 , Pages 86-95 ; 09601481 (ISSN) Roshandel, R ; Arbabi, F ; Moghaddam, G. K ; Sharif University of Technology
    2012
    Abstract
    Proton exchange membrane (PEM) fuel cell performance is directly related to the bipolar plate design and their channels pattern. Power enhancements can be achieved by optimal design of the type, size, or patterns of the channels. It has been realized that the bipolar plate design has significant role on reactant transport as well as water management in a PEM Fuel cell. Present work concentrates on improvements in the fuel cell performance by optimization of flow-field design and channels configurations. A three-dimensional, multi-component numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The simulation results showed excellent... 

    Fluid dynamics performance of bio -inspired flow channel design for bipolar plates in PEM fuel cells

    , Article 3rd European Fuel Cell Technology and Applications - Piero Lunghi Conference, EFC 2009, 15 December 2009 through 18 December 2009 ; 2009 , Pages 203-204 ; 9788882862114 (ISBN) Roshandel, R ; Karimi Moghaddam, G ; Barchiesi C ; Cigolotti V ; Chianella M ; McPhail S ; Lunghi P ; Sharif University of Technology
    ENEA  2009
    Abstract
    This study concentrates on the improvement in the performance of PEM fuel cells through optimization of the channel dimensions and patterns in the velocity and pressure fields in bipolar plates. For design and optimization purposes, a 2D numerical simulation of the flow distribution based on the Nervier-Stokes equations using individual computer code has been done. The outcome of the numerical simulations showed excellent agreement with the experimental results in previous works. Finally numerical simulation has been conducted to investigate the advantages of conventional patterns with inspiration from leaf flow pattern. It was found that both velocity and pressure fields are very uniform in... 

    Simulation of the multi-purpose gamma irradiator dose distribution based on the GEANT4 and GPU system

    , Article Journal of Instrumentation ; Volume 16, Issue 7 , 2021 ; 17480221 (ISSN) Razimanesh, M ; Hosseini, S. A ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Gamma irradiation systems are used extensively in the industry in order to sterilize medical devices, disinfect hygienic products and increase the shelf life of agricultural products. The method of gamma irradiation is superior to the older methods of heat or chemical treatment because it is by far a simpler operation. In this method, only one parameter, the exposure time is controlled, whereas in the other mentioned methods five or six different parameters need to be controlled. The design of irradiation systems generally includes the size and the location of products, and the arrangement of source rack pencils. In order to optimize the design of the gamma irradiation systems, it is needed... 

    Extraction of theoretical equation for the gamma ray buildup factor of the three-layered spherical shield

    , Article Journal of Instrumentation ; Volume 14, Issue 4 , 2019 ; 17480221 (ISSN) Rabi'ee, A ; Hosseini, S. A ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In the previous researches, several theoretical equations were presented for calculation of buildup factor of the single layer shields. Also, the theoretical equations were offered for the two-layered shield that consist of the known materials. For other possible modes of the multi-layered shield, the buildup factor are usually calculated via experimental or simulated data. The purpose of present study is the extraction of the new theoretical equation for the gamma ray buildup factor of three-layered spherical shield made of water, concrete and iron based on the Monte Carlo calculation. To this end, the gamma ray buildup factor of the three-layered spherical shield is calculated via... 

    High-frequency random vibrations of a stiffened plate with a cutout using energy finite element and experimental methods

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 234, Issue 16 , 2020 , Pages 3297-3317 Nokhbatolfoghahai, A ; Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this paper, by employing the energy finite element analysis, the high-frequency vibrations of a stiffened plate having a cutout, subjected to random vibrations, have been analyzed, and the obtained results have been validated by use of experimental methods. By using equations for joining of structures, energy finite element analysis computer codes were developed for the coupling of beam-plate elements. Finally, a plate containing a cutout and three stiffeners was fabricated and subjected to high-frequency random vibration tests. The results of the prepared codes were compared with the results of experiments. These comparisons indicated that at high frequencies, the energy finite element... 

    Sensitivity analysis of the efficiency of Compton camera to the detector parameters using the GEANT4 computer code

    , Article Applied Radiation and Isotopes ; Volume 176 , 2021 ; 09698043 (ISSN) Niknami, M ; Hosseini, S. A ; Loushab, M. E ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Compton imaging is an imaging technique in which Compton scattering is used to produce images from a gamma-ray source. Compton imaging systems are also known as Compton camera. The basic design of Compton imaging systems consists of two-position detectors that are sensitive to the position and energy scattered from gamma rays. Compton camera efficiency is defined as the fraction of photons entering the scatterer (disperse) detector that undergoes only one Compton scattering and is then photoelectrically absorbed in the absorber detector. In the present study, the efficiency of a Compton camera was investigated based on semiconductor detectors using the GEANT4 simulation toolkit. In this... 

    Application and performance comparison of high-resolution central schemes for the black oil model

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 17, Issue 7 , 2007 , Pages 736-753 ; 09615539 (ISSN) Naderan, H ; Taghizadeh Manzari, M ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2007
    Abstract
    Purpose - The purpose of this paper is to investigate the performance of a specific class of high-resolution central schemes in conjunction with the black oil models for hydrocarbon reservoir simulation. Design/methodology/approach - A generalized black oil model is adopted, in which the solubility of gas in both oil and water and evaporation of oil are considered, leading to a system of equations prone to degeneracy. A computer code is generated and three test cases are solved to evaluate the performance of various schemes in terms of accuracy and discontinuity handling. Findings - It is shown that, although some of the central schemes are highly sensitive to the choice of... 

    Experimental and theoretical investigation of centrifugal compressor performance characteristics

    , Article Proceedings of the ASME Turbo Expo, 9 June 2008 through 13 June 2008, Berlin ; Volume 6, Issue PART B , 2008 ; 9780791843161 (ISBN) Motavalli, M ; Hajilouy Benisi, A ; Nili Ahmadabadi, M ; International Gas Turbine Institute ; Sharif University of Technology
    2008
    Abstract
    Prediction of compressor performance is a basic step in design of this turbomachine, while designer can optimize plan by considering various conditions and calculating machine performance. Flow field in centrifugal compressor is threedimensional and intricate. Since 2-D and 3-D methods are very costly, consequently the mean line method usually is used for predicting compressor performance. The energy loss coefficients are used for this method. Because of the intricacy in flow and analysis of losses, most energy loss coefficients are attained by experimental procedures, however just some of them are determined according to theory and nature of the flow field. The purpose of this work is... 

    Evaluating the effect of using different sets of enrichment for FAs on fuel management optimization using CA

    , Article Annals of Nuclear Energy ; Volume 38, Issue 4 , 2011 , Pages 835-845 ; 03064549 (ISSN) Moghaddam, N. M ; Fadaei, A. H ; Zahedi, E ; Sharif University of Technology
    Abstract
    In nuclear reactor core design, achieving the optimized arrangement of fuel assemblies (FAs) is the most important step towards satisfying safety and economic requirements. In most studies, nuclear fuel optimizations have been performed by using a finite number of different types of FAs. However the effect of FA numbers with different enrichments and the difference between their maximum and minimum enrichment values can be important and should be evaluated in the optimization process. This research is aimed at evaluating the effect of using different enrichment values for FAs. This issue has been investigated by focusing on two parameters, namely, the initially selected enrichment and the... 

    Development of a 2-D 2-group neutron noise simulator for hexagonal geometries

    , Article Annals of Nuclear Energy ; Volume 37, Issue 8 , 2010 , Pages 1089-1100 ; 03064549 (ISSN) Malmir, H ; Vosoughi, N ; Zahedinejad, E ; Sharif University of Technology
    Abstract
    In this paper, the development of a neutron noise simulator for hexagonal-structured reactor cores using both the forward and the adjoint methods is reported. The spatial discretisation of both 2-D 2-group static and dynamic equations is based on a developed box-scheme finite difference method for hexagonal mesh boxes. Using the power iteration method for the static calculations, the 2-group neutron flux and its adjoint with the corresponding eigenvalues are obtained by the developed static simulator. The results are then benchmarked against the well-known CITATION computer code. The dynamic calculations are performed in the frequency domain which leads to discarding of the time... 

    Analysis of axial turbines behavior by means of comparing experimental and theoretical results

    , Article 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT, 21 July 2008 through 23 July 2008 ; June , 2008 ; 9781563479434 (ISBN) Karimi, M ; Hajilouy Benisi, A ; Sharif University of Technology
    2008
    Abstract
    Estimation of efficiency of axial flow gas turbines under variety of conditions i.e. different speed and pressure ratio has been hampered by lack of reliable experimental data and experiments cost. Because the flow in an axial turbine is complex and many mechanisms of the flow losses in turbine have not been known well, loss models are necessary not only in the preliminary process of mean line prediction, but also in the further process of through flow calculation in the simulation and optimization of turbines. Present study has been carried out using 1-D modeling. Simulation computer code is prepared for one-stage axial turbine based on Ainley&Mathieson method with some modifications in the...