Loading...
Search for: computer-codes
0.006 seconds
Total 30 records

    Sensitivity analysis of the efficiency of Compton camera to the detector parameters using the GEANT4 computer code

    , Article Applied Radiation and Isotopes ; Volume 176 , 2021 ; 09698043 (ISSN) Niknami, M ; Hosseini, S. A ; Loushab, M. E ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Compton imaging is an imaging technique in which Compton scattering is used to produce images from a gamma-ray source. Compton imaging systems are also known as Compton camera. The basic design of Compton imaging systems consists of two-position detectors that are sensitive to the position and energy scattered from gamma rays. Compton camera efficiency is defined as the fraction of photons entering the scatterer (disperse) detector that undergoes only one Compton scattering and is then photoelectrically absorbed in the absorber detector. In the present study, the efficiency of a Compton camera was investigated based on semiconductor detectors using the GEANT4 simulation toolkit. In this... 

    Simulation of the multi-purpose gamma irradiator dose distribution based on the GEANT4 and GPU system

    , Article Journal of Instrumentation ; Volume 16, Issue 7 , 2021 ; 17480221 (ISSN) Razimanesh, M ; Hosseini, S. A ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Gamma irradiation systems are used extensively in the industry in order to sterilize medical devices, disinfect hygienic products and increase the shelf life of agricultural products. The method of gamma irradiation is superior to the older methods of heat or chemical treatment because it is by far a simpler operation. In this method, only one parameter, the exposure time is controlled, whereas in the other mentioned methods five or six different parameters need to be controlled. The design of irradiation systems generally includes the size and the location of products, and the arrangement of source rack pencils. In order to optimize the design of the gamma irradiation systems, it is needed... 

    High-frequency random vibrations of a stiffened plate with a cutout using energy finite element and experimental methods

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 234, Issue 16 , 2020 , Pages 3297-3317 Nokhbatolfoghahai, A ; Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this paper, by employing the energy finite element analysis, the high-frequency vibrations of a stiffened plate having a cutout, subjected to random vibrations, have been analyzed, and the obtained results have been validated by use of experimental methods. By using equations for joining of structures, energy finite element analysis computer codes were developed for the coupling of beam-plate elements. Finally, a plate containing a cutout and three stiffeners was fabricated and subjected to high-frequency random vibration tests. The results of the prepared codes were compared with the results of experiments. These comparisons indicated that at high frequencies, the energy finite element... 

    Straggler mitigation in distributed matrix multiplication: fundamental limits and optimal coding

    , Article IEEE Transactions on Information Theory ; Volume 66, Issue 3 , 2020 , Pages 1920-1933 Yu, Q ; Maddah Ali, M. A ; Avestimehr, A. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a group of worker nodes. We target the stragglers' delay performance bottleneck, which is due to the unpredictable latency in waiting for slowest nodes (or stragglers) to finish their tasks. We propose a novel coding strategy, named entangled polynomial code, for designing the intermediate computations at the worker nodes in order to minimize the recovery threshold (i.e., the number of workers that we need to wait for in order to compute the final output). We demonstrate the optimality of entangled polynomial code in several cases, and show... 

    Simulation and performance improvement of cryogenic distillation column, using enhanced predictive Peng–Robinson equation of state

    , Article Fluid Phase Equilibria ; Volume 489 , 2019 , Pages 117-130 ; 03783812 (ISSN) Ardeshir Larijani, M ; Bayat, M ; Afshin, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, a cryogenic distillation column has been designed and simulated via a computer code based on the theta method of convergence. The required thermodynamic properties are determined from the enhanced predictive Peng-Robinson (E-PPR 78) equation of state which has a good accuracy in predicting the corresponding thermodynamic properties of natural gas components. The combined code of distillation column/equation of state has been verified with that of another study. In the present study, the results are achieved by the constant molar over-flow and inclusion of energy equations assumptions. In order to have more accuracy in the results, the energy equations were considered in the... 

    Extraction of theoretical equation for the gamma ray buildup factor of the three-layered spherical shield

    , Article Journal of Instrumentation ; Volume 14, Issue 4 , 2019 ; 17480221 (ISSN) Rabi'ee, A ; Hosseini, S. A ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In the previous researches, several theoretical equations were presented for calculation of buildup factor of the single layer shields. Also, the theoretical equations were offered for the two-layered shield that consist of the known materials. For other possible modes of the multi-layered shield, the buildup factor are usually calculated via experimental or simulated data. The purpose of present study is the extraction of the new theoretical equation for the gamma ray buildup factor of three-layered spherical shield made of water, concrete and iron based on the Monte Carlo calculation. To this end, the gamma ray buildup factor of the three-layered spherical shield is calculated via... 

    Computing on quantum shared secrets for general quantum access structures

    , Article Quantum Information Processing ; Volume 18, Issue 4 , 2019 ; 15700755 (ISSN) Bassirian, R ; Boreiri, S ; Karimipour, V ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Quantum secret sharing is a method for sharing a secret quantum state among a number of individuals such that certain authorized subsets of participants can recover the secret shared state by collaboration and other subsets cannot. In this paper, we first propose a method for sharing a quantum secret in a basic (2, 3) threshold scheme, only by using qubits and the 7-qubit CSS code. Based on this (2, 3) scheme, we propose a new (n, n) scheme, and we also construct a quantum secret sharing scheme for any quantum access structure by induction. Secondly, based on the techniques of performing quantum computation on 7-qubit CSS codes, we introduce a method that authorized subsets can perform... 

    Dandelion: a unified code offloading system for wearable computing

    , Article IEEE Transactions on Mobile Computing ; 29 May , 2018 ; 15361233 (ISSN) Golkarifard, M ; Yang, J ; Huang, Z ; Movaghar, A ; Hui, P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Execution speed seriously bothers application developers and users for wearable devices such as Google Glass. Intensive applications like 3D games suffer from significant delays when CPU is busy. Energy is another concern when the devices are in low battery level but users need them for urgency use. To ease such pains, one approach is to expand the computational power by cloud offloading. This paradigm works well when the available Internet access has enough bandwidth. Another way is to leverage nearby devices for computation-offloading, which is known as device-to-device (D2D) offloading. In this paper, we present Dandelion, a unified code offloading system for wearable computing. Dandelion... 

    Simulated and measured neutron/gamma light output distribution for poly-energetic neutron/gamma sources

    , Article Journal of Instrumentation ; Volume 13, Issue 3 , March , 2018 ; 17480221 (ISSN) Hosseini, S. A ; Zangian, M ; Aghabozorgi, S ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the... 

    Development of two-dimensional, multigroup neutron diffusion computer code based on GFEM with unstructured triangle elements

    , Article Annals of Nuclear Energy ; Volume 51 , 2013 , Pages 213-226 ; 03064549 (ISSN) Hosseini, S. A ; Vosoughi, N ; Sharif University of Technology
    2013
    Abstract
    Various methods for solving the forward/adjoint equation in hexagonal and rectangular geometries are known in the literatures. In this paper, the solution of multigroup forward/adjoint equation using Finite Element Method (FEM) for hexagonal and rectangular reactor cores is reported. The spatial discretization of equations is based on Galerkin FEM (GFEM) using unstructured triangle elements. Calculations are performed for both linear and quadratic approximations of the shape function; based on which results are compared. Using power iteration method for the forward and adjoint calculations, the forward and adjoint fluxes with the corresponding eigenvalues are obtained. The results are then... 

    Neutron noise simulation by GFEM and unstructured triangle elements

    , Article Nuclear Engineering and Design ; Volume 253 , 2012 , Pages 238-258 ; 00295493 (ISSN) Hosseini, S. A ; Vosoughi, N ; Sharif University of Technology
    2012
    Abstract
    In the present study, the neutron noise, i.e. The stationary fluctuation of the neutron flux around its mean value, is calculated in 2-group forward and adjoint diffusion theory for both hexagonal and rectangular reactor cores. To this end, the static neutron calculation is performed at the first stage. The spatial discretization of equations is based on linear approximation of Galerkin Finite Element Method (GFEM) using unstructured triangle elements. Using power iteration method, forward and adjoint fluxes with the corresponding eigenvalues are obtained. The results are then benchmarked against the valid results for BIBLIS-2D and IAEA-2D benchmark problems and DONJON computer code. The... 

    Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells

    , Article Renewable Energy ; Volume 41 , 2012 , Pages 86-95 ; 09601481 (ISSN) Roshandel, R ; Arbabi, F ; Moghaddam, G. K ; Sharif University of Technology
    2012
    Abstract
    Proton exchange membrane (PEM) fuel cell performance is directly related to the bipolar plate design and their channels pattern. Power enhancements can be achieved by optimal design of the type, size, or patterns of the channels. It has been realized that the bipolar plate design has significant role on reactant transport as well as water management in a PEM Fuel cell. Present work concentrates on improvements in the fuel cell performance by optimization of flow-field design and channels configurations. A three-dimensional, multi-component numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The simulation results showed excellent... 

    Prediction of asphaltene precipitation during pressure depletion and CO2 injection for heavy crude

    , Article Petroleum Science and Technology ; Volume 28, Issue 9 , Apr , 2010 , Pages 892-902 ; 10916466 (ISSN) Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    2010
    Abstract
    In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir... 

    Numerical solution of the neutron transport equation using cellular neural networks

    , Article Annals of Nuclear Energy ; Volume 36, Issue 1 , 2009 , Pages 15-27 ; 03064549 (ISSN) Boroushaki, M ; Sharif University of Technology
    2009
    Abstract
    Various methods have been used for solving the neutron transport equation in the past, and a number of computer codes have been developed based on these solution methods. This paper describes a novel method for the solution of the steady-state and time-dependent neutron transport equation using the duality between neutronic parameters in the method of characteristic (MOC) and the electrical parameters in the cellular neural networks (CNN). The relevant electrical circuit can be simulated by professional electrical circuit simulator software, HSPICE. This software is used for numerical solution of the transport equation only by preparation of appropriate inputs. This method does not need... 

    Fluid dynamics performance of bio -inspired flow channel design for bipolar plates in PEM fuel cells

    , Article 3rd European Fuel Cell Technology and Applications - Piero Lunghi Conference, EFC 2009, 15 December 2009 through 18 December 2009 ; 2009 , Pages 203-204 ; 9788882862114 (ISBN) Roshandel, R ; Karimi Moghaddam, G ; Barchiesi C ; Cigolotti V ; Chianella M ; McPhail S ; Lunghi P ; Sharif University of Technology
    ENEA  2009
    Abstract
    This study concentrates on the improvement in the performance of PEM fuel cells through optimization of the channel dimensions and patterns in the velocity and pressure fields in bipolar plates. For design and optimization purposes, a 2D numerical simulation of the flow distribution based on the Nervier-Stokes equations using individual computer code has been done. The outcome of the numerical simulations showed excellent agreement with the experimental results in previous works. Finally numerical simulation has been conducted to investigate the advantages of conventional patterns with inspiration from leaf flow pattern. It was found that both velocity and pressure fields are very uniform in... 

    Development of a 3-D multigroup program for Dancoff factor calculation

    , Article Annals of Nuclear Energy ; Volume 36, Issue 10 , 2009 , Pages 1486-1497 ; 03064549 (ISSN) Zahedinejad, E ; Vosoughi, N ; Sohrabpour, M ; Sharif University of Technology
    2009
    Abstract
    Several parameters, one of which is the Dancoff Factor (DF), are used to calculate the resonance integral (RI) and reduced flux in the resonance region of heterogeneous systems as well as to accurately determine the group constants for criticality calculations. This paper is a report on the development of a program to calculate the DF correction factor using Monte Carlo method and collision probability definition in three-dimensional (3-D) geometries and with multi energy groups. Hence, the DF for any arbitrary arrangement of cylindrical and slab fuel elements is hereby calculated. The fuel elements are monitored and kept at equal levels, though different material compositions and formations... 

    Analysis of axial turbines behavior by means of comparing experimental and theoretical results

    , Article 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT, 21 July 2008 through 23 July 2008 ; June , 2008 ; 9781563479434 (ISBN) Karimi, M ; Hajilouy Benisi, A ; Sharif University of Technology
    2008
    Abstract
    Estimation of efficiency of axial flow gas turbines under variety of conditions i.e. different speed and pressure ratio has been hampered by lack of reliable experimental data and experiments cost. Because the flow in an axial turbine is complex and many mechanisms of the flow losses in turbine have not been known well, loss models are necessary not only in the preliminary process of mean line prediction, but also in the further process of through flow calculation in the simulation and optimization of turbines. Present study has been carried out using 1-D modeling. Simulation computer code is prepared for one-stage axial turbine based on Ainley&Mathieson method with some modifications in the... 

    Experimental and theoretical investigation of centrifugal compressor performance characteristics

    , Article Proceedings of the ASME Turbo Expo, 9 June 2008 through 13 June 2008, Berlin ; Volume 6, Issue PART B , 2008 ; 9780791843161 (ISBN) Motavalli, M ; Hajilouy Benisi, A ; Nili Ahmadabadi, M ; International Gas Turbine Institute ; Sharif University of Technology
    2008
    Abstract
    Prediction of compressor performance is a basic step in design of this turbomachine, while designer can optimize plan by considering various conditions and calculating machine performance. Flow field in centrifugal compressor is threedimensional and intricate. Since 2-D and 3-D methods are very costly, consequently the mean line method usually is used for predicting compressor performance. The energy loss coefficients are used for this method. Because of the intricacy in flow and analysis of losses, most energy loss coefficients are attained by experimental procedures, however just some of them are determined according to theory and nature of the flow field. The purpose of this work is... 

    Application and performance comparison of high-resolution central schemes for the black oil model

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 17, Issue 7 , 2007 , Pages 736-753 ; 09615539 (ISSN) Naderan, H ; Taghizadeh Manzari, M ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2007
    Abstract
    Purpose - The purpose of this paper is to investigate the performance of a specific class of high-resolution central schemes in conjunction with the black oil models for hydrocarbon reservoir simulation. Design/methodology/approach - A generalized black oil model is adopted, in which the solubility of gas in both oil and water and evaporation of oil are considered, leading to a system of equations prone to degeneracy. A computer code is generated and three test cases are solved to evaluate the performance of various schemes in terms of accuracy and discontinuity handling. Findings - It is shown that, although some of the central schemes are highly sensitive to the choice of... 

    Prediction of asphaltene precipitation during solvent/CO2 injection conditions: A comparative study on thermodynamic micellization model with a different characterization approach and solid model

    , Article Journal of Canadian Petroleum Technology ; Vol. 50, issue. 3 , March , 2011 , p. 65-74 Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    There are different thermodynamic models that have been applied for modelling of asphaltene precipitation caused by various reasons, such as solvent/CO2 injection and pressure depletion. In this work, two computer codes based on two different asphaltene precipitation thermodynamic models-the first being the thermodynamic micellization model with a different characterization approach and the second being the solid model-have been developed and used for predicting asphaltene precipitation data reported in the literature as well as in the obtained data for Sarvak reservoir crude, which is one of the most potentially problematic Iranian heavy oil reserves under gas injection conditions. For the...