Loading...
Search for: constrained-optimization
0.009 seconds
Total 86 records

    Interval Methods for Global Optimization

    , M.Sc. Thesis Sharif University of Technology Bedrosian, Narbeh (Author) ; Mahdavi Amiri, Nezameddin (Supervisor)
    Abstract
    We explain new interval methods, recently introduced in the literature, for solving unconstrained and constrained global optimization problems. The strategy is characterized by a subdivision of the argument intervals of the expression and a recomputation of the expression with these new intervals. By varying the selection and termination criteria, we explain new variants. These methods are used to solve problems with an objective function that has possibly a large number of local minima and constraints that may be nonlinear or nonconvex. We describe algorithms that return global minima and points at which the objective function is within a defined distance from the global minima. Numerical... 

    An Inexact Newton Method for Nonconvex Equality Constrained Optimization

    , M.Sc. Thesis Sharif University of Technology Mousavi, Ahmad (Author) ; Mahdavi Amiri, Nezamoddin (Supervisor)

    Design and Analysis of Filter Trust-Region Algorithms for Unconstrained and Bound Constrained Optimization

    , M.Sc. Thesis Sharif University of Technology Fatemi, Masoud (Author) ; Mahdavi Amiri, Nezameddin (Supervisor)
    Abstract
    Design, analysis and practical implementation of the filter trust-region algorithms are investigated. First, we introduce two filter trust-region algorithms for solving the unconstrained optimization problem. These algorithms belong to two different class of optimization algorithms: (1) The monotone class, and (2) The non-monotone class. We prove the global convergence of the sequence of the iterates generated by the new algorithms to the first and second order critical points. Then, we propose a filter trust-region algorithm for solving bound constrained optimization problems and show that the algorithm converges to a first order critical point. Moreover, we address some well known... 

    A Line Search Exact Penalty Method Using Steering Rules

    , M.Sc. Thesis Sharif University of Technology Dehghan Nayeri, Maryam (Author) ; Mahdavi Amiri, Nezamoddin (Supervisor)
    Abstract
    Exact linear search algorithm recently have been proposed in the literature by Byrd, Lopez-Calvaz and Nocedal for solving nonlinear programming problems. Line search algorithms for nonlinear programming problems must include safeguards to have global convergence properties. We explain an exact penalization approach that extends the class of problems that can be solved with line search SQP methods. In the algorithm, the penalty parameter is adjusted at every iteration to ensure sufficient progress in linear feasibilility and to promote acceptance of the step. A trust region is used to assist in the determination of the penalty parameter. It is shown that the algorithm enjoys favorable... 

    A First-Order Interior-Point Method For Linearly Constrained Smooth Optimization

    , M.Sc. Thesis Sharif University of Technology Ebadi Zadeh, Monireh (Author) ; Peyghami, Mohammad Reza (Supervisor) ; Fotouhi, Morteza (Supervisor)
    Abstract
    In this thesis, we propose a first-order interior-point method for linearly constrained smooth optimization which was recently proposed in the literatuare that unifies and extends first-order affine-scaling method and replicator dynamics method for standard quadratic programming. Global convergence and, in the case of quadratic program, the (sub)linear convergence rate and iterate convergence results are derived.The method is implemented and numerical experiments on simplex onstrained problems with 1000 variables is reported  

    A Filter-Trust-Region Method for Simple-Bound Constrained Optimization

    , M.Sc. Thesis Sharif University of Technology Mehrali Varjani, Mohsen (Author) ; Mahdavi Amiri, Nezameddin (Supervisor)
    Abstract
    We explain a filter-trust-region algorithm for solving nonlinear optimization problems with simple bounds recently proposed by Sainvitu and Toint. The algorithm is shown to be globally convergent to at least one first-order critical point. We implement the algorithm and test the program on various problems. The results show the effectiveness of the algorithm  

    , M.Sc. Thesis Sharif University of Technology Dehghani, Saeed (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    Robust model predictive control(RMPC) is a control strategy that has been widely adopted in industry and academic researches.In this project we have modified robust nonlinear model predictive control using SOS and dynamic feedback. In this control strategy we will linearize the nonlinear model of the system about it’s operating point. We will consider the error of linearization as an uncertainty and find an upper bound for uncertainty. Then we will change control objective to minimizing this upper bound. The most advantage of changing the control objective is that nonlinear system results a non-convex optimization problem but this strategy terminates a convex optimization problem. To find... 

    Solving Nonlinear Systems of Mixed Iqualities and Inequalities Via Trust Region Quadratic Methods

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Shojaeddin (Author) ; Razvan, Mohammad Reza (Supervisor) ; Payghami, Mohammad Reza (Supervisor)

    Control of Adaptive Optic Systems Using Transverse Actuators

    , M.Sc. Thesis Sharif University of Technology Rostam, Mohammad Reza (Author) ; Jalali, Mir Abbas (Supervisor)
    Abstract
    Turbulence can distort and corrupt the image in quite a few ways when light from a distance star or another astronomical object enters the Earth's atmosphere. It is inevitable that all images produced by any telescope on ther Earth are blurred by these distortions. Adaptive Optics is a technology used to improve the performance of optical systems by reducing the effect of wavefront distortions: it aims at correcting the deformations of an incoming wavefront by deforming a mirror in order to compensate for the distortion. The research work reported in this thesis presents a solution to the surface shape control problems in a Deformable Mirror system. Our first goal is to derive equations that... 

    Path Planning for a Mobil Robot in an Unkonwn Environment By Recurrent Neural Networks

    , M.Sc. Thesis Sharif University of Technology Hassanzadeh, Mohammad (Author) ; Zarei, Alireza (Supervisor) ; Malek, Alaeddin (Supervisor)
    Abstract
    Path planning of a robot inside an environment with obstacles is to determine an appropriate path for moving from an initial point to a destination without colliding the obstacles. The main considerations in selecting such a path are its length and simplicity in terms of links or turn angles. In this paper, we study this problem for a point robot in the plane and our goal is to minimize the path length. We solve this problem by converting it to an optimization problem and solving the resulted optimization problem by a recurrent neural network. According to the implementation results, the obtained path is a proper approximation of the minimum length path, especially when obstacles are not too... 

    A Line Search Exact Penalty Method Using Steering Rules

    , M.Sc. Thesis Sharif University of Technology Zamani, Moslem (Author) ; Mahdavi-Amiri, Nezamoddin (Supervisor)
    Abstract
    We explain a new penalty method recently introduced in the literature for solv-ing constrained optimization problems. In this method, the penalty parameter is adjusted dynamically at every iteration to ensure su?cient progress in linear feasi-bility. A trust region is used to assist in the determination of the penalty parameter, but not in the step computation. It is shown that the algorithm has global conver-gence. We implement the algorithm and test the program on a number of di?cult optimization problems. The numerical results con?rm the e?ectiveness of the algo-rithm  

    Simulation of Saccharomyces Cerevisiae Batch Culture Behavior Using Dynamic Flux Analysis and Nonlinear Objective Functions

    , M.Sc. Thesis Sharif University of Technology Ershadian Arani, Hamid (Author) ; Farhadi, Fathollah (Supervisor) ; Pishvaei, Mahmoud Reza (Supervisor)
    Abstract
    There are many limitations to determine relationships within biological systems. Among the limitations of these systems, one can consider the lack of sufficient information about them, such as the complete knowledge of many networks, the lack of reaction information, the complexity of the analysis of these reactions, etc. One of the methods to analyze these systems is called flux balance analysis. This method consists of three parts: objective function, equal constraints and unequal constraints. Among the features available in this method, we can mention less need for experimental information and no need for high processing systems. In order to determine the objective functions in this... 

    Assessment of optimal reaction progress variable characteristics for partially premixed flames

    , Article Combustion Theory and Modelling ; Volume 26, Issue 5 , 2022 , Pages 797-830 ; 13647830 (ISSN) Chitgarha, F ; Ommi, F ; Farshchi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The reaction progress variable is a crucial concept in the advanced flamelet combustion models. As a controlling variable, a well-defined progress variable must consider the essential features of the combustion process. It is usually a heuristically defined linear combination of some major chemical species mass fractions. However, such a simple definition could lead to inaccurate results for the fuel-rich reactive mixtures or complicated fuels, due to the vast number of chemical species in the combustion process. In this paper, a new method for generating a reaction progress variable is proposed through solving a constrained optimisation problem. The proposed method uses a genetic algorithm... 

    On the coupled continuous knapsack problems: projection onto the volume constrained Gibbs N-simplex

    , Article Optimization Letters ; Volume 10, Issue 1 , 2016 , Pages 137-158 ; 18624472 (ISSN) Tavakoli, R ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Coupled continuous quadratic knapsack problems (CCK) are introduced in the present study. The solution of a CCK problem is equivalent to the projection of an arbitrary point onto the volume constrained Gibbs N-simplex, which has a wide range of applications in computational science and engineering. Three algorithms have been developed in the present study to solve large scale CCK problems. According to the numerical experiments of this study, the computational costs of presented algorithms scale linearly with the problem size, when it is sufficiently large. Moreover, they show competitive or even superior computational performance compared to the advanced QP solvers. The ease of... 

    Optimizing a multi-item economic order quantity problem with imperfect items, inspection errors, and backorders

    , Article Soft Computing ; Volume 23, Issue 22 , 2019 , Pages 11671-11698 ; 14327643 (ISSN) Khalilpourazari, S ; Pasandideh, S. H. R ; Akhavan Niaki, S. T ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    This paper proposes a multi-item economic order quantity model with imperfect items in supply deliveries. The inspection process to classify the items is not perfect and involves two types of error: Type-I and Type-II. To cope with the uncertainty involved in real-world applications and to bring the problem closer to reality, operational constraints are assumed stochastic. The aim is to determine the optimal order and back order sizes of the items in order to achieve maximum total profit. As the proposed mathematical model is a constrained nonlinear programming, three different solution methods including an exact method named the interior-point and two novel meta-heuristics named grey wolf... 

    Efficient formulation of the Gibbs–Appell equations for constrained multibody systems

    , Article Multibody System Dynamics ; Volume 53, Issue 3 , 2021 , Pages 303-325 ; 13845640 (ISSN) Mirtaheri, S. M ; Zohoor, H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In this study, we present explicit equations of motion for general mechanical systems exposed to holonomic and nonholonomic constraints based on the Gibbs-Appell formulation. Without constructing the Gibbs function, the proposed method provides a minimal set of first-order dynamic equations applicable for multibody constrained systems. Transforming the Newton–Euler equations from physical coordinates to quasivelocity spaces eliminate constraint reaction forces from motion equations. In this study, we develop a general procedure to select effective quasivelocities, which indicate that the proposed quasivelocities satisfy constraints, eliminate Lagrange multipliers, and reduce the number of... 

    Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique

    , Article International Journal of Fracture ; Volume 197, Issue 1 , 2016 , Pages 1-24 ; 03769429 (ISSN) Khoei, A. R ; Vahab, M ; Hirmand, M ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    In this paper, the interaction between the fluid-driven fracture and frictional natural fault is modeled using an enriched-FEM technique based on the partition of unity method. The intersection between two discontinuities is modeled by introducing a junction enrichment function. In order to model the fluid effect within the fracture, the fluid pressure is assumed to be constant throughout the propagation process. The frictional contact behavior along the fault faces is modeled using an X-FEM penalty method within the context of the plasticity theory of friction. Finally, several numerical examples are solved to illustrate the accuracy and robustness of proposed computational algorithm as... 

    A three-dimensional mesh-free model for analyzing multi-phase flow in deforming porous media

    , Article Meccanica ; Volume 51, Issue 3 , 2016 , Pages 517-536 ; 00256455 (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    Fully coupled flow-deformation analysis of deformable multiphase porous media saturated by several immiscible fluids has attracted the attention of researchers in widely different fields of engineering. This paper presents a new numerical tool to simulate the complicated process of two-phase fluid flow through deforming porous materials using a mesh-free technique, called element-free Galerkin (EFG) method. The numerical treatment of the governing partial differential equations involving the equilibrium and continuity equations of pore fluids is based on Galerkin’s weighted residual approach and employing the penalty method to introduce the essential boundary conditions into the weak forms.... 

    A method for optimal reduction of locating error with the minimum adjustments of locators based on the geometric capability ratio of process

    , Article International Journal of Advanced Manufacturing Technology ; Volume 94, Issue 9-12 , February , 2018 , Pages 3963-3978 ; 02683768 (ISSN) Khodaygan, S ; Sharif University of Technology
    Springer London  2018
    Abstract
    Imprecise productions with low quality are produced by the incapable manufacturing processes. Prediction of the process capability in the design stage plays a key role to improve the product quality. In this paper, a new method is proposed to optimally reduce the locating error by allocating the minimum adjustments of locators. To quantify the precision of the manufacturing process, a proper tool that is called the geometric capability ratio (GCR) of the manufacturing process is introduced. First, based on a part fixture model, the relationship between the locating error and its sources is developed. Then, using the proposed geometric capability ratio, the manufacturing process capability is... 

    A new hybrid algorithm to solve bound-constrained nonlinear optimization problems

    , Article Neural Computing and Applications ; Volume 32, Issue 16 , 2020 , Pages 12427-12452 Duary, A ; Rahman, M. S ; Shaikh, A. A ; Akhavan Niaki, S. T ; Bhunia, A. K ; Sharif University of Technology
    Springer  2020
    Abstract
    The goal of this work is to propose a hybrid algorithm called real-coded self-organizing migrating genetic algorithm by combining real-coded genetic algorithm (RCGA) and self-organizing migrating algorithm (SOMA) for solving bound-constrained nonlinear optimization problems having multimodal continuous functions. In RCGA, exponential ranking selection, whole-arithmetic crossover and non-uniform mutation operations have been used as different operators where as in SOMA, a modification has been done. The performance of the proposed hybrid algorithm has been tested by solving a set of benchmark optimization problems taken from the existing literature. Then, the simulated results have been...