Loading...
Search for: corrosion-resistant-coatings
0.009 seconds
Total 35 records

    Zinc-doped silica/polyaniline core/shell nanoparticles towards corrosion protection epoxy nanocomposite coatings

    , Article Composites Part B: Engineering ; Volume 212 , 2021 ; 13598368 (ISSN) Haddadi, S. A ; Mehmandar, E ; Jabari, H ; Ramazani Saadatabadi, A ; Mohammadkhani, R ; Yan, N ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Commercial paints and coatings can serve as a protective barrier for metallic substrates in a corrosive environment. A considerable variety of nanostructures can be embedded in a polymeric coating to achieve both barrier and active protection. This research aims to elucidate the role of polyaniline (PANI) as an active polyelectrolyte modifier for the surface modification of mesoporous silica nanoparticles (MSNs) doped with zinc cations (Zn2+). To characterize the samples, we employed different techniques, including field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR), Raman... 

    The effect of titanium dioxide (TiO2) nanoparticles on hydroxyapatite (HA)/TiO2 composite coating fabricated by electrophoretic deposition (EPD)

    , Article Journal of Materials Engineering and Performance ; Volume 27, Issue 5 , May , 2018 , Pages 2338-2344 ; 10599495 (ISSN) Amirnejad, M ; Afshar, A ; Salehi, S ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF),... 

    Synthesis of methyltriethoxysilane-modified calcium zinc phosphate nanopigments toward epoxy nanocomposite coatings: Exploring rheological, mechanical, and anti-corrosion properties

    , Article Progress in Organic Coatings ; Volume 171 , 2022 ; 03009440 (ISSN) Haddadi, S. A ; Alibakhshi, E ; Labani Motlagh, A ; Ramazani S. A., A ; Ghaderi, M ; Ramezanzadeh, B ; Mahdavian, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, the effects of unmodified calcium zinc phosphate (UCZP) and modified calcium zinc phosphate (MCZP) nanopigments (NPs) on the rheological, mechanical, and corrosion protection performance (CPP) of the epoxy (EP) coatings were investigated. Transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to study morphology and overall chemical structure of synthesized calcium zinc phosphate (CZP) NPs, respectively. The grafting of methyltriethoxysilane (MTES) molecules on the surface of CZP was assessed using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and... 

    Synthesis and characterization of polyaniline/nanodiamond hybrid nanostructures with various morphologies to enhance the corrosion protection performance of epoxy coating

    , Article Diamond and Related Materials ; Volume 120 , 2021 ; 09259635 (ISSN) Mohammadkhani, R ; Shojaei, A ; Rahmani, P ; Pirhady Tavandashti, N ; Amouzegar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, nano-sized diamond particles (ND) were functionalized in two consecutive stages. First, dry thermal oxidation was employed to obtain carboxylated ND. In the next step, carboxylated ND was properly surface modified through wet chemistry to acquire aminated-ND (ND-NH2). Then, polyaniline (PANI) was synthesized in the presence of aminated-ND particles at a broad concentration from 1 wt% to 70 wt% to obtain PANI/ND hybrid nanostructures. The chemical structure, morphology, and thermal stability of nanoparticles were comprehensively characterized by different techniques such as FT-IR, UV–visible, TGA, XRD, FESEM, and TEM. It was observed that the morphology of PANI/ND... 

    Synthesis and application of mesoporous carbon nanospheres containing walnut extract for fabrication of active protective epoxy coatings

    , Article Progress in Organic Coatings ; Volume 133 , 2019 , Pages 206-219 ; 03009440 (ISSN) Haddadi, S. A ; Behroozi Kohlan, T ; Momeni, S ; Ramazani S. A., A ; Mahdavian, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this article, the synthesis procedure of mesoporous carbon nanospheres (MCNSs) using silica hard-templates, doping of the nanospheres with walnut extract, and their impact on active protective properties of an epoxy coating are presented. Field emission scanning electron microscope (FE-SEM) results showed that the synthesis of these nanocontainers was successfully done in spherical form. Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) results showed that walnut extract as a green inhibitor was doped into the pores of nanocapsules. Corrosion resistance of the mild steel samples in the 3.5 wt.% NaCl solution in the presence and absence of walnut extract... 

    Surface modification of carbon steel by ZnO-graphene nano-hybrid thin film

    , Article Surface and Coatings Technology ; Volume 363 , 2019 , Pages 1-11 ; 02578972 (ISSN) Razavizadeh, O ; Ghorbani, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Application of corrosion resistant coatings is one of the most widely used means of protecting steel. Zinc coated (galvanize) steel, is well known for galvanic protection of steel substrates and nowadays, particular attention has been paid to the coupling of graphene oxide (GO) with metallic materials, in order to lessen corrosion rate. In this research, an isopropanol supercritical reducing environment prepared to make zinc ions bond directly with graphene oxides, to form a button shape hybrids of ZnO-Graphene (ZnOG). The hybridized bonding between zinc and graphene oxide is confirmed by Fourier Transform Infra-Red analysis. And the morphology revealed, using a Field Emission Scanning... 

    Plasma electrolytic oxidation of Mg-Ti couple metals fabricated by friction stir welding: Characterization and corrosion studies

    , Article Materials Research Express ; Volume 6, Issue 8 , 2019 ; 20531591 (ISSN) Aliabadi, A ; Ghorbani, M ; Barati Darband, G ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In this study, plasma electrolytic oxidation (PEO) of Ti-Mg couple metal fabricated by friction stir welding (FSW) in silicate base solution has been addressed and effect of silicate concentration in the electrolyte on coating properties was studied. Microstructure, composition and corrosion resistance of coating were characterized using scanning electron microscopy(SEM), X-ray diffraction (XRD) and potentiodynamic polarization methods. Ti-Mg couple were successfully coated simultaneously in silicate electrolyte and results of this study indicated that silicate concentration has a considerable impact on microstructure and corrosion resistance of the coating. In 5 g l-1 sodium silicate... 

    Plasma electrolytic oxidation and corrosion protection of friction stir welded AZ31B magnesium alloy-titanium joints

    , Article Surface and Coatings Technology ; Volume 393 , 2020 Aliasghari, S ; Rogov, A ; Skeldon, P ; Zhou, X ; Yerokhin, A ; Aliabadi, A ; Ghorbani, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Joining of dissimilar light metals by friction stir welding (FSW) is of interest to reduce weight and fuel consumption in the transport sector. Such coupled metals may need protective surface treatments, e.g. against wear or corrosion, for some applications. In this work, the formation of plasma electrolytic oxidation (PEO) coatings in a silicate-based electrolyte for corrosion protection of FSW AZ31B magnesium alloy-titanium joints has been studied. The joints, if unprotected, may be susceptible to severe galvanic corrosion in chloride-containing environments. The coatings were characterized by scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction. Mg2SiO4 and... 

    PH-Sensitive polydopamine–La (III) complex decorated on carbon nanofiber toward on-demand release functioning of epoxy anti-corrosion coating

    , Article Langmuir ; Volume 38, Issue 38 , 2022 , Pages 11707-11723 ; 07437463 (ISSN) Ghaderi, M ; Saadatabadi, A. R ; Mahdavian, M ; Haddadi, S. A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The high aspect ratio and unique thermal and electrical characteristics of carbon nanofiber (CNF) made it an ideal physical barrier against the penetration of corrosive ions. However, the poor compatibility of the CNF with the polymer matrix and the lack of active corrosion inhibitors are the key limitations of this nanomaterial, resulting in short-term anti-corrosion resistance. An intelligent self-healing epoxy (EP) coating, including CNF modified with a polydopamine (PDA)-La3+ complex, was successfully fabricated to overcome these issues. Electrochemical impedance spectroscopy (EIS) evaluation implied that mild steel (MS) submerged in a 3.5 wt % NaCl solution containing the CNF-PDA-La... 

    Optimization of nano HA-SiC coating on AISI 316L medical grade stainless steel via electrophoretic deposition

    , Article Materials Letters ; Volume 285 , 2021 ; 0167577X (ISSN) Hosseini, M. R ; Ahangari, M ; Johar, M. H ; Allahkaram, S. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Biocompatible nanostructured coating plays an important role in enhancement of osseointegration ability of metallic implants. This study sets out to obtain optimized SiC concentration in Hydroxyapatite (HA) coating on AISI 316L stainless steel alloy through electrophoretic deposition method. Effect of SiC concentrations (1, 2, and 3%.wt) on the morphology, corrosion behaviour, and mechanical properties of the HA coating is investigated. Results show that SiC could obstruct the formation and growth of micro cracks in the HA coating where HA-3%SiC is considered as a crack free coating. Electrochemical tests reveal that SiC has improved the corrosion resistance of HA coating, and HA-3%SiC... 

    Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating

    , Article Journal of Industrial and Engineering Chemistry ; Volume 83 , 2020 , Pages 153-163 Rahmani, P ; Shojaei, A ; Pirhady Tavandashti, N ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2020
    Abstract
    In the present study, thermally oxidized nanodiamond (OND) was first modified non-covalently with dodecylamine (DDA) as corrosion inhibitor. In this respect, reactive primary amine of DDA molecule with high isoelectric point (IEP) could interact easily with negative charge carboxylic acid groups of OND. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) proved that OND nanoparticle was successfully functionalized by DDA up to approximately 5 wt% grafting contnet. Both OND and dodecylamine modified OND (DND) were loaded in epoxy (EP)/polyamine hardener matrix at the same concentration of 1 wt% and applied on mild steel substrate. Morphology of EP-DND and... 

    Mechanical and corrosion protection properties of a smart composite epoxy coating with dual-encapsulated epoxy/polyamine in carbon nanospheres

    , Article Industrial and Engineering Chemistry Research ; Volume 58, Issue 8 , 2019 , Pages 3033-3046 ; 08885885 (ISSN) Haddadi, S. A ; Ramazani, S. A ; Mahdavian, M ; Taheri, P ; Mol, J. M. C ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Carbon nanocapsules doped separately with epoxy and polyamine were used to fabricate an epoxy nanocomposite coating. Carbon nanospheres with dual-encapsulated epoxy/polyamine were dispersed uniformly in the epoxy resin at concentrations of 2, 5, and 10 wt %. The mechanical properties of the nanocomposites were studied by tensile testing and scratch hardness measurements. Furthermore, nanocomposites were applied on mild steel substrates, and their corrosion protection and barrier performance were evaluated using electrochemical impedance spectroscopy (EIS). Adhesion loss measurements of coatings after 240 h exposure to 3.5 wt % NaCl solution were performed by pull-off adhesion testing. Also,... 

    Magnetron-sputtered TixNy thin films applied on titanium-based alloys for biomedical applications: Composition-microstructure-property relationships

    , Article Surface and Coatings Technology ; Volume 349 , 2018 , Pages 251-259 ; 02578972 (ISSN) Nemati, A ; Saghafi, M ; Khamseh, S ; Alibakhshi, E ; Zarrintaj, P ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Progress in tissue engineering and regenerative medicine necessitates the use of novel materials with promising bio-surface for biomedical applications. In this work, TixNy thin films are applied on biological TC4 substrates in a mixed atmosphere of Ar and N2 via magnetron sputtering system for the protection of TC4 alloy. The effects of N/Ti ratio on the phase structure, growth orientation, contact angle, and the mechanical and corrosion performances of thin films are discussed by implementation of composition-microstructure-property interrelationships. The phase structure of TixNy thin films is changed from amorphous-like to single phase Ti2N structure with increasing N/Ti ratio. In the... 

    In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; Volume 405 , 2021 ; 02578972 (ISSN) Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; Volume 405 , 2021 ; 02578972 (ISSN) Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    In vitro study: bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; 2020 Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    In vitro bioactivity and biocompatibility of magnesium implants coated with poly(methyl methacrylate) - bioactive glass composite

    , Article Materials Today Communications ; Volume 33 , 2022 ; 23524928 (ISSN) Rouein, Z ; Jafari, H ; Pishbin, F ; Mohandes, F ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Magnesium (Mg) and its alloys have proved promising as biodegradable candidates for the repair of bone tissue. Despite the encouraging bio-related properties of Mg, its high corrosion rate in contact with body fluids still presents a major challenge. An efficient approach to address this issue is to provide a protective coating on Mg. The present research evaluates, for the first time, in vitro bioactivity and biocompatibility of a novel multifunctional composite coating based on poly(methyl methacrylate) (PMMA) biopolymer and bioactive glass (BG) particles on Mg-based implant. Electrophoretic deposition (EPD) was utilized to obtain this coating from a bi-component suspension. Coatings’... 

    Improved electrochemical performance of plasma electrolytic oxidation coating on titanium in simulated body fluid

    , Article Journal of Materials Engineering and Performance ; Volume 28, Issue 7 , 2019 , Pages 4120-4127 ; 10599495 (ISSN) Ahmadnia, S ; Aliasghari, S ; Ghorbani, M ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    The effect of plasma electrolytic oxidation (PEO) pre-treatments on corrosion behavior of titanium in simulated body fluid (SBF) is investigated. Three pre-treatments are compared, using silicate, calcium phosphate and mixed silicate and calcium phosphate (1:1) electrolytes, respectively. The resultant coatings in different compositions and morphologies were examined by high-resolution field emission scanning electron microscopy equipped with energy-dispersive spectrometer and x-ray diffraction. The PEO-treated specimens revealed distribution of coating species, mainly the titanium-rich inner coating region. However, findings show highly localized variations in composition within their... 

    Hydrophobic octadecylamine-functionalized graphene/TiO2 hybrid coating for corrosion protection of copper bipolar plates in simulated proton exchange membrane fuel cell environment

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 30 , 2020 , Pages 15380-15389 Sadeghian, Z ; Hadidi, M. R ; Salehzadeh, D ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present work, G-TiO2 and G-ODA-TiO2 hybrids were prepared by concurrent surface functionalization and reducing of graphene oxide (GO) using octadecylamine (ODA). The G-TiO2 and G-ODA-TiO2 powders were deposited on the copper surface by electrophoretic deposition (EPD) technique. The wettability of coatings revealed the preferable hydrophobic characteristic of G-ODA-TiO2 compared to G-TiO2 and bare copper with water contact angles of 130°, 101°, and 87°, respectively. The anti-corrosion performance of specimens in a 0.5 M H2SO4 solution was appraised by the potentiodynamic polarization (Tafel analysis), which clearly showed that G-TiO2 and G-ODA-TiO2 coatings can act as a great barrier... 

    Graphene oxide nanoplatforms reduction by green plant-sourced organic compounds for construction of an active anti-corrosion coating; experimental/electronic-scale DFT-D modeling studies

    , Article Chemical Engineering Journal ; Volume 397 , 1 October , 2020 Mohammadkhani, R ; Ramezanzadeh, M ; Akbarzadeh, S ; Bahlakeh, G ; Ramezanzadeh, B ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the Peganum harmala seed extract (PHSE) was used as a green reducing agent of graphene oxide with high deoxygenation capability. PHSE not only acts as a reducing agent of GO due to the high amount of nitrogen-rich compounds but also plays an essential role in the particles' active anti-corrosion performance improvement. In order to add more active inhibition property, the zinc cations were doped successfully on the chemical structure of GO nanosheets, and eventually, the RGO-PHSE-Zn nanocomposite was obtained. The FT-IR results and UV–visible achievements declared that the epoxide (-C-O-C-) functional groups attached to the surface of the GO nanosheets had been successfully...