Loading...
Search for: crystallinity
0.019 seconds
Total 278 records

    Boltzmann Method for Investigating the Non-Linear Mechanical Behavior of Coarse- Grained Crystals with FCC Network, Exploiting the Effect of Dislocation

    , M.Sc. Thesis Sharif University of Technology Sabetfard, Sajad (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Supervisor)
    Abstract
    In these days world, the increasing growth of Nanotechnology has caused to invent and create new numerical and also computational methods which have more abilities and capabilities for evaluating systems in this scale. Although Some techniques, such as Molecular Dynamics Methods are capable of evaluating nanostructures, lack the ability to simulate large systems of practical size and time scales which is the most important index during the simulation. Therefore, in order to be able to produce an acceptable exact simulation of a large model, simulation of which is limited by the computational cost of the current molecular dynamics methods at hand, Coarse-Graining technique has recently become... 

    The Size Effect of Coarse-Grained Modeling for Nonlinear Behavior of Nano-Structure Materials

    , M.Sc. Thesis Sharif University of Technology Khademabbasi, Navid (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Supervisor)
    Abstract
    The development of Nanotechnology increasingly has elevated the urgency for the expansion of modern numerical and computational methods that have evaluating systems with capability at this scale. In spite of being fully capable of evaluating nanostructures, the existing techniques, such as Molecular Dynamics Methods, lack the ability to simulate large systems of practical size and time scales. Thus, being able to create a large model of realistic simulation, which is confined by the computational expense of the running Molecular Dynamics methods at hand, Coarse-Graining technique has recently become a very effective and beneficial method which refers to the development of simplified models of... 

    Multiscale Investigation of Plastic Behavior in Crystalline Metals

    , M.Sc. Thesis Sharif University of Technology Davoodi, Sina (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Co-Advisor)
    Abstract
    In this study, a modern multiscale sequential molecular dynamics (MD) – finite element (FE) coupling method is proposed to represent the role of grain boundary (GB) planar defect on mechanical properties of crystalline structures at various temperatures. Different Grain Boundary misorientation angle is considered and the temperature varies from 0 up to 800 K. The embedded-atom method (EAM) many-body interatomic potential is implemented to consider pairwise interactions between atoms in the crystalline structures with face-centered-cubic (FCC) lattice structure at different temperatures. In addition, the Nose-Hoover thermostat is employed to adjust the fluctuation of temperature. The atomic... 

    Application of Dynamics Multi-scale Modeling of Dislocation in Nano-Crystalline Materials

    , M.Sc. Thesis Sharif University of Technology Karimi, Hossein (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Dislocations are one of the most important classes of defects in crystals. They have significant effects on the physical properties of crystals. They could be primarily created during the formation of a crystal or during the loading on specimen. Dislocation’s movement due to stress is the main cause of crystal plasticity. Since dislocation is a change in perfect crystal structure it is possible to identify it in the molecular level. However, the high computational cost of the MD level, has led researchers to using the multi-scale methods. Researchers have used many various multi-scale methods to study dislocations. The method used in this paper is based on energy. Total energy of system for... 

    Extraction of the Forming Limit Diagram in Magnesium Microtubes Used in Stents by Modeling the Hydroforming Process in Abaqus Finite Element Software

    , M.Sc. Thesis Sharif University of Technology Reisi, Mahdi (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    One of the common methods of removing blood clots is angioplasty with stents. Due to the fact that the mechanical properties of the stent are directly related to the microtube it is made of. Therefore, investigating the mechanical properties of microtubes is very important. One of the ways used to evaluate the plasticity of microtubes; Drawing a graph is the limit of shaping. The purpose of this research is to extract the forming limit diagram of magnesium microtube by simulating the hydroforming process in Abaqus software. First, in order to confirm the modeling, the hydroforming process for aluminum has been simulated and compared with the existing experimental results. The comparison... 

    A New Method Based on Crystal Plasticity Finite Element to Predict the Formability of Steel Sheets with Spheroidal Cementites

    , Ph.D. Dissertation Sharif University of Technology Einolghozati, Mona (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    In this research, using the crystal plasticity finite element method, the effects of various microstructural features on behavior of spherical steel sheets have been investigated. The cementite phase ratio, the grain sizes of ferrite and cementite, and the percentage of residual pearlite in the steel structure due to incomplete annealing are the major microstructural parameters studied in this work. A grain generator software has been developed to generate ferrite grains as well as cementite particles distributed in the ferrite matrix. A hard coating with special properties as an intermediate layer around the cementite grains has been considered to simulate the contact between ferrite grains... 

    Degradation of Polypropylene Random Copolymer in Aqueous Solution of Chlorine Dioxide: Effect of Crystalline Structure and Morphology

    , M.Sc. Thesis Sharif University of Technology Rohollah Shamizadeh (Author) ; Pircheraghi, Gholamreza (Supervisor)
    Abstract
    Polypropylene is a semi-crystalline thermoplastic used in various industries and the second most used polymer globally. Polypropylene is sensitive to degradation by o agents due to having tertiary carbon in its chain. Chlorine-based disinfectants, used to disinfect drinking water, cause the degradation of hot water pipes made of polypropylene random copolymer. The stability of polypropylene against oxidizing chemical agents depends on the type of crystalline phase and polymer morphology. This research investigated the effect of alpha, beta, and gamma crystalline phases and spherulite size on random polypropylene copolymer's chemical stability in chlorine dioxide. Three samples were prepared,... 

    Simulation of the Effect of Cooling Rate and Chemical Composition on the Atomic Structure of Bulk Metallic Glass Iron-Phosphorus and Nickel-Phosphorus

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh, Danial (Author) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    bulk metallic glass Unlike metal materials that have a crystalline structure, amorphous glass is an amorphous material with an irregular atomic structure that simultaneously has the same physical properties as metals. Due to the absence of crystal defects such as dislocation and grain boundaries, these materials show unique mechanical properties such as high strength and elastic strain, abrasion resistance and proper corrosion. However, their plastic deformation is heterogeneous, concentrated, and accompanied by sudden failure. Unlike metals, these materials do not have a long-range crystalline order, and their atomic structure includes short-range and mid-range order. The short-range order... 

    Effect of Doping of La in Pr Site and Cu/Fe in Ni site on Crystal Structure, Oxygen Non-stoichiometry level and Electrical Conductivity of Pr2NiO4 as Intermediate Temperature Solid Oxide Fuel Cell Cathode

    , M.Sc. Thesis Sharif University of Technology Farhat, Pooneh (Author) ; Faghihi Sani, Mohammad Ali (Supervisor)
    Abstract
    Nowadays, one of the most important research goals is to develop intermediate-temperature solid oxide fuel cells (IT-SOFC) operated at 500–800 °C. However, the large cathode polarization resistance caused by the reduced temperature is a major barrier against such an urgent demand for commercialization. In this regard, it is necessary to select a proper material as a cathode working efficiently at reduced temperatures without losing its desired performance. Various mixed ionic electron conductors (MIECs), especially Ruddlesden–Popper-type oxides, are used to improve the cathode performance at intermediate temperatures. Among these layered oxides, Pr2NiO4 has been reported to possess the... 

    Study of Crystalline Structure in Random Co-polypropylene and Its Influence on Melting Behavior

    , M.Sc. Thesis Sharif University of Technology Khedri, Faezeh (Author) ; Bagheri, Reza (Supervisor) ; Asgari, Sirus (Supervisor)
    Abstract
    In today’s world the growth in population make food production and also the packaging industry increase. Finding new ways to enhance the efficiency of packaging is become so important beyond researchers. As the randomized co-polypropylene is the most suitable materials for this industry many attempts have been made to control its melting behavior with the aim of expanding their application in the packaging industry. The study in this field indicate the dependence of the melting behavior on the structural characteristics of the material such as molecular mass, chain structure, type of crystalline structure, and the amount of dispersion of the crystals thickness. Due to the lack of proper... 

    Study Effects of Nucleating Agent and Nano Reinforecment on Crystalline Structure and Mechanical Properties of Polypropylene Block Copolymer

    , M.Sc. Thesis Sharif University of Technology Shahsavan, Shakiba (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Polypropylene block copolymer is used in different industries like pipe productions. This copolymer has proper mechanical properties, specially it has good impact strength, but in some applications it’s elastic modulus (stiffness) is not enough and that leads to some problemes in servise. Nucleating agents influence crystalline structure and properties and also the mechanical properties by controlling the crystallization process. Nanoparticles also have a beneficial effects on physical and mechanical properties. In this study, the effect of adding two types of α-phase nucleating agents (commercial names NA11 and DMDBS) in the form of masterbatch wt 5% with a carrier of polypropylene block... 

    Atomistic Study of Iinterface Properties and Structure of Nickel-Silicon and Polyethelene-Ghraphene by Molecular Dynamics Simulation

    , M.Sc. Thesis Sharif University of Technology Amini, Hamed (Author) ; Kokabi, Amir Hossein (Supervisor) ; Simchi, Abdolreza (Supervisor)
    Abstract
    First atomistic simulation was used to study the deformation and fracture mechanisms of Ni-Si interfaces under tensile and shear loads dependent on the crystal structure of interface zone. Modified embedded atom method (MEAM) potential was utilized for molecular dynamics (MD) modeling. The simulation includes analysis of common neighbors, coordination number, least-square atomic local strain, and radial distribution function. The profound effect of interface crystallography on the tensile and shear deformation is shown. The highest tensile strength is obtained for interfaces with high plane density due to lowest atomic disorder while under shear loading planes with low density exhibit a high... 

    TiO2 Nanophotocatalyst: Preparation via Sol-Gel Method and Deposition on Natural Fiber

    , M.Sc. Thesis Sharif University of Technology Haghighat, Shima (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    TiO2 is one of the most frequently used photocatalyst materials. Porous TiO2 nanostructure has drawn much attention recently due to high decomposition rate of organic pollutants. In this thesis, TiO2 nanoparticles were synthesized via sol-gel method and were coated on cotton and jute fiber separately; besides, the impregnated fibers were heat treated to eliminate cellulose. Titanium tetraisopropoxide (TTIP) was used as a precursor and two solutions, acidic and alcoholic, were used as the primary solutions for synthesis. In acidic solution, the crystalline phase and size distribution of TiO2 nanoparticles were evaluated with changing pH.Then, the appropriate pH was chosen for coating. In... 

    Preparation of PVDF/PMMA/PZT Nanocomposites and Studying of Its Crystal Structure, Morphology and Electrical Properties

    , M.Sc. Thesis Sharif University of Technology Omoomi, Ali (Author) ; Frounchi, Masoud (Supervisor)
    Abstract
    Polyvinylidene fluoride is highly regarded by researchers due to its piezoelectric properties, mechanical properties, chemical and thermal stability and biocompatibility. This thermoplastic polymer has a semi-crystalline structure and, depending on the crystallization conditions, has five distinct crystalline phases α, β, γ, δ and ε. The β, γ and δ phases are electroactive, and among them, the β phase has high piezoelectric activity due to its high dipole moment. This study focuses on increasing the amount of β phase in polyvinylidene fluoride and increasing its piezoelectric property. Polyvinylidene fluoride is highly miscible with oxygen containing polymers such as polymethyl... 

    Effect of Co Doping on Crystal and Electronic Structure of BaFe2-xCoxAs2

    , M.Sc. Thesis Sharif University of Technology Shafiei, Manouchehr (Author) ; Khosroabadi, Hossein (Supervisor) ; Akhavan, Mohammad (Supervisor)
    Abstract
    The discovery of the iron-based superconductors attracted much experimental and theoretical attention in the recent years. BaFe2As2 is one of the highlighted materials which is the antiferromagnetic metal (below Neel temperature) and undergoes to superconducting and non-magnetic state by variety of doping, usually accompanied by a structural phase transition. Superconductivity is appeared in this system by doping Co and Ni at the Fe sites which is one of the excited situations in the physics of superconductors, where the magnetic doping suppresses the superconducting state. So, the study of Co doping of the electronic structure of this system, might lead us to better understanding of the... 

    Determination of Stable Crystal Structure of Y358 New Superconductor and its Phonon and Electronic Structure using Density Functional Theory

    , M.Sc. Thesis Sharif University of Technology Rasti, Mohammad (Author) ; Khosroabadi, Hossein (Supervisor) ; Akhavan, Mohammad (Co-Advisor)
    Abstract
    Y-based Superconducting compounds (YBCO) with different stoichiometry have been considered by researchers for its transition temperature above the boiling temperature of liquid nitrogen, preparation of high quality samples, simple crystal and electronic structure and other advantages relative to the other high-Tc copper oxide superconductors. Reaching to higher transition temperature has been considered in the recent years. In 2009, new compound of this family with different stoichiometry Y3Ba5Cu8O18(Y358) and transition temperature above 100 K was synthesized which is 10 K higher than maximum transition temperature in this family. Confirming this transition temperature can be help us for... 

    Single Sided Dye Sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Behrouznejad, Fatemeh (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    In this project single sided dye sensitized solar cell is introduced as a new design that has both of electrodes in one side. These electrodes can be separated vertically by a thin insulator layer such as SiO2 or horizontally by lithographic method. First a metallic thin film is patterned by lithography, and then thickened by electrochemical deposition of Chromium. Platinum is electrodeposited on the substrate of counter electrode and a thin spacer layer is deposited on Platinum layer to separate it from Titanium dioxide layer.
    In Chapters 1, 2 & 3 basic science and methods which are needed for doing this project is introduced. In chapter 1 material for making a standard dye sensitized... 

    , M.Sc. Thesis Sharif University of Technology Ali Abadi, Azar (Author) ; Akhavan, Mohammad (Supervisor)
    Abstract
    The most important researchers’ purposes in superconductivity are achievement of the room temperature superconductivity and to understand the high temperature superconductivity mechanism. Researchers’ goal in to increase the transition temperature by applying pressure, changing oxygen content, different doping, and changing stoichiometry in the families of the high temperature superconductors. In this research, which has been carried out in the Magnet Research Laboratary of Sharif University of Technology, samples of Y3Ba5Cu8O18, Gd3Ba5Cu8O18, and Pr3Ba5Cu8O18 have been synthesized by the standard solid-state reaction technique, the structure, electrical and magnetic properties of the... 

    Synthesis and Characterization of Transition Metal Complexes with Carboxamide Ligands and Nanostructures for Catalytic and Antibacterial Activites Application

    , Ph.D. Dissertation Sharif University of Technology Kiani, Mahsa (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    Carboxamide ligands have been part of the growing research in the field of coordination chemistry of transition metal complexes. The solvent used in the classical method of synthesis of these compounds is pyridine, a solvent which is extremely toxic. In this project, we have developed a new method of synthesis using ionic liquids as the reaction media and have prepared Hqcq (1), Htp(2) under optimum conditions for Pd(II) and Pt(II) complexes of Hqcq and Co(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes of Htp with the formula:[Pd(qcq)(OAc)] (1a), [Pt(qcq)(Cl)] (1b), [Co(Htp)2(H2O)2].C2H5OH (2a), Co3O4 (2b), [Cu(tp)2(H2O)].CHCl3 (2c), CuO (2d), [Zn(tp)2(H2O)2] (2e), [Cd(tp)2(H2O)2].CH3OH... 

    Introducing structural approximation method for modeling nanostructures

    , Article Journal of Computational and Theoretical Nanoscience ; Vol. 7, Issue 2 , 2010 , p. 423-428 ; ISSN: 15461955 Momeni, K ; Alasty, A ; Sharif University of Technology
    Abstract
    In this work a new method for analyzing nanostructured materials has been proposed to accelerate the simulations for solid crystalline materials. The proposed Structural Approximation Method (SAM) is based on Molecular Dynamics (MD) and the accuracy of the results can also be improved in a systematic manner by sacrificing the simulation speed. In this method a virtual material is used instead of the real one, which has less number of atoms and therefore fewer degrees of freedom, compared to the real material. The number of differential equations that must be integrated in order to specify the state of the system will decrease significantly, and the simulation speed increases. To generalize...