Loading...
Search for: cytology
0.011 seconds
Total 229 records

    Time-domain ultrasound as prior information for frequency-domain compressive ultrasound for intravascular cell detection: A 2-cell numerical model

    , Article Ultrasonics ; Volume 125 , 2022 ; 0041624X (ISSN) Ghanbarzadeh Dagheyan, A ; Nili, V. A ; Ejtehadi, M ; Savabi, R ; Kavehvash, Z ; Ahmadian, M. T ; Vahdat, B. V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    This study proposes a new method for the detection of a weak scatterer among strong scatterers using prior-information ultrasound (US) imaging. A perfect application of this approach is in vivo cell detection in the bloodstream, where red blood cells (RBCs) serve as identifiable strong scatterers. In vivo cell detection can help diagnose cancer at its earliest stages, increasing the chances of survival for patients. This work combines time-domain US with frequency-domain compressive US imaging to detect a 20-μ MCF-7 circulating tumor cell (CTC) among a number of RBCs within a simulated venule inside the mouth. The 2D image reconstructed from the time-domain US is employed to simulate the... 

    A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Kouzehkanan, Z. M ; Saghari, S ; Tavakoli, S ; Rostami, P ; Abaszadeh, M ; Mirzadeh, F ; Satlsar, E. S ; Gheidishahran, M ; Gorgi, F ; Mohammadi, S ; Hosseini, R ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Accurate and early detection of anomalies in peripheral white blood cells plays a crucial role in the evaluation of well-being in individuals and the diagnosis and prognosis of hematologic diseases. For example, some blood disorders and immune system-related diseases are diagnosed by the differential count of white blood cells, which is one of the common laboratory tests. Data is one of the most important ingredients in the development and testing of many commercial and successful automatic or semi-automatic systems. To this end, this study introduces a free access dataset of normal peripheral white blood cells called Raabin-WBC containing about 40,000 images of white blood cells and color... 

    A new modeling and control scheme for cascaded split-source converter cells

    , Article IEEE Transactions on Industrial Electronics ; Volume 69, Issue 8 , 2022 , Pages 7618-7628 ; 02780046 (ISSN) Montazeri, S. H ; Milimonfared, J ; Zolghadri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Cascaded split-source inverter (CSSI) is a new single-stage modular multilevel topology. Each cell of this converter converts dc to ac power in the buck or boost operation mode without any additional power switch. This article develops a design method based on a detailed model for CSSI. This model shows that energy storage elements experience double-fundamental frequency ripples besides high-frequency ones. It accurately calculates voltage gains and capacitor voltage and inductor current ripples. On the other hand, common carrier-based multilevel modulations have been modified in terms of both reference and carrier signals to control the inverter under symmetric and asymmetric conditions.... 

    Techno-economic assessment of a novel power-to-liquid system for synthesis of formic acid and ammonia, based on CO2 electroreduction and alkaline water electrolysis cells

    , Article Renewable Energy ; Volume 187 , 2022 , Pages 1224-1240 ; 09601481 (ISSN) Bahnamiri, F. K ; Khalili, M ; Pakzad, P ; Mehrpooya, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The power-to-liquid concept is a promising strategy to convert the power plants' flue gas to value-added liquid fuels using renewable energy. This technology could potentially reduce global greenhouse gases emissions and mitigate the environmental problems associated with the fossil fuels industry. In this regard, the main objective of the present study is to propose a novel power-to-liquid plant for the synthesis of formic acid and ammonia from power plants' flue gas, emphasizing the role of electrochemical technologies and renewable energy. The system's basis is developed by the integration of CO2 electroreduction cell, alkaline water electrolysis cell, and photovoltaic panel technologies.... 

    In vitro study: synthesis and evaluation of Fe3O4/CQD magnetic/fluorescent nanocomposites for targeted drug delivery, MRI, and cancer cell labeling applications

    , Article Langmuir ; Volume 38, Issue 12 , 2022 , Pages 3804-3816 ; 07437463 (ISSN) Fattahi Nafchi, R ; Ahmadi, R ; Heydari, M ; Rahimipour, M. R ; Molaei, M. J ; Unsworth, L ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    In the present study, first, Fe3O4nanoparticles were functionalized using glutaric acid and then composited with CQDs. Doxorubicin (DOX) drug was loaded to evaluate the performance of the nanocomposite for targeted drug delivery applications. The XRD pattern confirmed the presence of characteristic peaks of CQDs and Fe3O4. In the FTIR spectrum, the presence of carboxyl functional groups on Fe3O4/CQDs was observed; DOX (positive charge) is loaded onto Fe3O4/CQDs (negative charge) by electrostatic absorption. FESEM and AFM images showed that the particle sizes of Fe3O4and CQDs were 23-75 and 1-3 nm, respectively. The hysteresis curves showed superparamagnetic properties for Fe3O4and Fe3O4/CQDs... 

    Droplet-based microfluidics in biomedical applications

    , Article Biofabrication ; Volume 14, Issue 2 , 2022 ; 17585082 (ISSN) Amirifar, L ; Besanjideh, M ; Nasiri, R ; Shamloo, A ; Nasrollahi, F ; De Barros, N. R ; Davoodi, E ; Erdem, A ; Mahmoodi, M ; Hosseini, V ; Montazerian, H ; Jahangiry, J ; Darabi, M.A ; Haghniaz, R ; Dokmeci, M.R ; Annabi, N ; Ahadian, S ; Khademhosseini, A ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Droplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology. In the present review, we first introduce standard methods for droplet generation (i.e. passive and active methods) and discuss the latest examples of emulsification and particle synthesis approaches enabled by microfluidic platforms. Then, the applications... 

    Integrating hydrodynamic and acoustic cell separation in a hybrid microfluidic device: a numerical analysis

    , Article Acta Mechanica ; Volume 233, Issue 5 , 2022 , Pages 1881-1894 ; 00015970 (ISSN) Ashkezari, A. H. K ; Dizani, M ; Shamloo, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Cell separation microfluidic devices have evolved into a multitude of biomedical and clinical research. Nonetheless, many critical issues remain in the way of achieving an excellent separation of target cells from a heterogeneous sample. Parallel to the abundant experimental studies related to the hybrid microfluidic methods, it is easy to perceive the lack of numerical investigations in order to optimize the separation process and its accuracy. In this study, for the first time to the best of our knowledge, a hybrid system by integrating acoustophoresis and pinched-flow fractionation (PFF) is proposed to achieve a viable system for a wide-range, precise separation. Employing the ultrasound... 

    A modified PEG-Fe3O4 magnetic nanoparticles conjugated with D(+)GLUCOSAMINE (DG): mri contrast agent

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 32, Issue 6 , 2022 , Pages 1988-1998 ; 15741443 (ISSN) Rezayan, A. H ; Kheirjou, S ; Edrisi, M ; Shafiee Ardestani, M ; Alvandi, H ; Sharif University of Technology
    Springer  2022
    Abstract
    Molecular imaging (MI) can provide not only structural images utilizing temporal imaging techniques, but also functional and molecular data using a variety of newly developed imaging techniques. Nanotechnology’s application in MI has commanded a lot of attention in recent decades, and it has provided tremendous potential for imaging living subjects. In this study, D-glucosamine conjugated functionalized magnetic iron oxide nanoparticles (Fe3O4-PEG-DG NPs) were prepared and studied as magnetic resonance imaging (MRI) contrast agents. To evaluate their distribution, single-photon emission computed tomography (SPECT) is performed. Fe3O4 NPs are made using a well-known co-precipitation process... 

    Production of uniform size cell-enclosing silk derivative vehicles through coaxial microfluidic device and horseradish crosslinking reaction

    , Article European Polymer Journal ; Volume 172 , 2022 ; 00143057 (ISSN) Badali, E ; Hosseini, M ; Varaa, N ; Mahmoodi, N ; Goodarzi, A ; Taghdiri Nooshabadi, V ; Hassanzadeh, S ; Arabpour, Z ; Khanmohammadi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Silk fibroin (SF) as a natural biopolymer holds great potential in biomedical research because of its biocompatibility, easy processability and high strength properties. However, slow gelation time has narrowed its applications, specifically in cell-laden microparticle production due to insufficient crosslinkable moieties. This study aimed to develop cell-laden silk fibroin-phenol (SF-Ph) microparticle through co-flow microfluidic system using SF conjugated Ph moieties whereas covalent crosslinking is mediated with horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). For this, the SF-Ph was synthesized through carbodiimide condensation crosslinking reaction. Aqueous... 

    A High Performance MRAM Cell Through Single Free-Layer Dual Fixed-Layer Magnetic Tunnel Junction

    , Article IEEE Transactions on Magnetics ; Volume 58, Issue 12 , 2022 ; 00189464 (ISSN) Alibeigi, I ; Tabandeh, M ; Shouraki, S. B ; Patooghy, A ; Rajaei, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    As technology size scales down, magnetic tunnel junctions (MTJs) as a promising technology are becoming more and more sensitive to process variation, especially in oxide barrier thickness. Process variation particularly affects the cell resistance and the critical switching current for the smaller dimensions. This article proposes an MTJ cell with one free and two pinned layers, which highly improves the process variation robustness. By employing the spin transfer torque (STT)-spin-Hall effect (SHE) switching method, our proposed MTJ cell improves the switching speed and lowers the switching power consumption. Per simulations, an MRAM cell built with the proposed MTJ cell offers up to 36%... 

    Engineered conducting polymer-based scaffolds for cell release and capture

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2022 ; 00914037 (ISSN) Mahdavi, S. S ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Conducting polymer-based devices and scaffolds has become remarkably popular due to their properties such as conductivity, tunable electrochemical properties, and straightforward fabrication procedures. Hence, they have versatile applications and can be used as implants, biosensors, cell capture/release devices, and regenerative medicine scaffolds. This review addresses the effect of conductive polymers on cell behavior since their conductive features can be applied to simulate a cellular response. Moreover, the impact of polymer chemical and physical properties on cellular response has been discussed. Recent biomedical engineering approaches used for cell capture and release were reviewed... 

    Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and pva hydrogel

    , Article Advanced Materials Technologies ; Volume 7, Issue 1 , 2022 ; 2365709X (ISSN) Abolpour Moshizi, S ; Moradi, H ; Wu, S ; Han, Z. J ; Razmjou, A ; Asadnia, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Flow sensors play a critical role in monitoring flow parameters, including rate, velocity, direction, and rotation frequency. In this paper, inspired by biological hair cells in the human vestibular system, an innovative flow sensor is developed based on polyvinyl alcohol (PVA) hydrogel nanocomposites with a maze-like network of vertically grown graphene nanosheets (VGNs). The VGNs/PVA hydrogel absorbs a copious amount of water when immersed in water, making the sensor highly sensitive to tiny stimuli underwater. The sensor demonstrates a high sensitivity (5.755 mV (mm s−1)−1) and extremely low velocity detection (0.022 mm s−1). It also reveals outstanding performance in detecting... 

    Effect of cysteine oxidation in SARS-CoV-2 receptor-binding domain on its interaction with two cell receptors: Insights from atomistic simulations

    , Article Journal of Chemical Information and Modeling ; Volume 62, Issue 1 , 2022 , Pages 129-141 ; 15499596 (ISSN) Ghasemitarei, M ; Privat Maldonado, A ; Yusupov, M ; Rahnama, S ; Bogaerts, A ; Ejtehadi, M. R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly... 

    Performance analysis of heterogeneous cellular caching networks with overlapping small cells

    , Article IEEE Transactions on Vehicular Technology ; Volume 71, Issue 2 , 2022 , Pages 1941-1951 ; 00189545 (ISSN) Rezaei, F ; Khalaj, B. H ; Xiao, M ; Skoglund, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Caching at network edges has attracted more and more research interests recently for the purpose of alleviating the network traffic pressure especially in backhaul links and improving user experience. We study Heterogeneous Cellular Caching Networks (HCCNs) consisting of macro cells in which $N$ small cell base stations (SBSs) equipped with cache memory operate in conjunction with the macro cell base station (MBS). We provide closed-form expressions of the MBS and SBSs utilization factors and average user-experienced-delay in HCCNs with overlapping coverage regions, considering general traffic models for the request arrivals based on the Independent Reference Model (IRM) and renewal traffic... 

    The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices

    , Article Journal of Assisted Reproduction and Genetics ; Volume 39, Issue 1 , 2022 , Pages 19-36 ; 10580468 (ISSN) Ahmadkhani, N ; Hosseini, M ; Saadatmand, M ; Abbaspourrad, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Although medical advancements have successfully helped a lot of couples with their infertility by assisted reproductive technologies (ART), sperm selection, a crucial stage in ART, has remained challenging. Therefore, we aimed to investigate novel sperm separation methods, specifically microfluidic systems, as they do sperm selection based on sperm and/or the female reproductive tract (FRT) features without inflicting any damage to the selected sperm during the process. In this review, after an exhaustive studying of FRT features, which can implement by microfluidics devices, the focus was centered on sperm selection and investigation devices. During this study, we tried not to only point to... 

    The impact of zirconium oxide nanoparticles content on alginate dialdehyde-gelatin scaffolds in cartilage tissue engineering

    , Article Journal of Molecular Liquids ; Volume 335 , 2021 ; 01677322 (ISSN) Ghanbari, M ; Salavati Niasari, M ; Mohandes, F ; Firouzi, Z ; Mousavi, S.-D ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The desire to regenerate and repair native tissues can be immediately performed by multiple tissue engineering procedures. Gelatin and alginate are biocompatible and biodegradable polymers. The addition of ZrO2 nanoparticles (NPs) into the alginate-gelatin hydrogel is considered to improve mechanical and chemical properties. Therefore, nanocomposite hydrogels have been manufactured by the freeze-drying procedure utilizing oxidized alginate-gelatin with ZrO2 NPs as a reinforcement. The fabricated nanocomposite hydrogels were character-ized by FTIR, FESEM, and rheometer. The hydrogels containing a higher ZrO2 NPs content (1.5%) have better mechanical properties than the hydrogels without NPs.... 

    Development and in vitro evaluation of photocurable GelMA/PEGDA hybrid hydrogel for corneal stromal cells delivery

    , Article Materials Today Communications ; Volume 27 , 2021 ; 23524928 (ISSN) Mahdavi, S. S ; Abdekhodaie, M. J ; Mashayekhan, S ; Baradaran Rafii, A ; Kim, K ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Gelatin methacrylate (GelMA) was proved to be a promising bioink for corneal stromal cell delivery. However, GelMA has low mechanical properties which makes it difficult to be suturable and handled for clinical applicattion. In this study, three different ratios of 12.5 % GelMA and 10 % PEGDA were investigated for corneal stromal cells delivery. The mixture containing 75 % GelMA and 25 % PEGDA (75G25P) was found to have reasonable cell viability and suturing strength. Moreover, collagen nanofibers were incorporated into 75G25P hydrogel to improve the mechanical and biomimetic properties of the construct (75G25P-E). A hybrid structure was obtained by injecting the optimized bioink on the... 

    High-throughput, label-free isolation of white blood cells from whole blood using parallel spiral microchannels with u-shaped cross-section

    , Article Biosensors ; Volume 11, Issue 11 , 2021 ; 20796374 (ISSN) Mehran, A ; Rostami, P ; Saidi, M. S ; Firoozabadi, B ; Kashaninejad, N ; Sharif University of Technology
    MDPI  2021
    Abstract
    Rapid isolation of white blood cells (WBCs) from whole blood is an essential part of any WBC examination platform. However, most conventional cell separation techniques are labor-intensive and low throughput, require large volumes of samples, need extensive cell manipulation, and have low purity. To address these challenges, we report the design and fabrication of a passive, label-free microfluidic device with a unique U-shaped cross-section to separate WBCs from whole blood using hydrodynamic forces that exist in a microchannel with curvilinear geometry. It is shown that the spiral microchannel with a U-shaped cross-section concentrates larger blood cells (e.g., WBCs) in the inner... 

    Defining microRNA signatures of hair follicular stem and progenitor cells in healthy and androgenic alopecia patients

    , Article Journal of Dermatological Science ; Volume 101, Issue 1 , 2021 , Pages 49-57 ; 09231811 (ISSN) Mohammadi, P ; Nilforoushzadeh, M. A ; Youssef, K. K ; Sharifi Zarchi, A ; Moradi, S ; Khosravani, P ; Aghdami, R ; Taheri, P ; Hosseini Salekdeh, G ; Baharvand, H ; Aghdami, N ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Background: The exact pathogenic mechanism causes hair miniaturization during androgenic alopecia (AGA) has not been delineated. Recent evidence has shown a role for non-coding regulatory RNAs, such as microRNAs (miRNAs), in skin and hair disease. There is no reported information about the role of miRNAs in hair epithelial cells of AGA. Objectives: To investigate the roles of miRNAs affecting AGA in normal and patient's epithelial hair cells. Methods: Normal follicular stem and progenitor cells, as well as follicular patient's stem cells, were sorted from hair follicles, and a miRNA q-PCR profiling to compare the expression of 748 miRNA (miRs) in sorted cells were performed. Further, we... 

    3D distributed modeling of trolling-mode AFM during 2D manipulation of a spherical cell

    , Article Journal of Nanoparticle Research ; Volume 23, Issue 4 , 2021 ; 13880764 (ISSN) Mohammadi, S.Z ; Nejat Pishkenari, H ; Mohammadi Moghaddam, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In this study, a general 3D distributed modeling of Trolling-Mode AFM (TR-AFM) as a nanorobot is presented to analyze the 2D manipulation process of a spherical cell. To this aim, the analysis is categorized into 3 sections. In the first section, 6 deformations of TR-AFM are taken into account, and the standard model of the system is obtained. Moreover, the system is simulated in ANSYS Workbench. The results of modal and transient analyses of the system from both analytical and software methods reveal high agreement, which confirms the accuracy of the presented analytical model. In the second section, by utilizing the 3D derived model, displacement of a spherical yeast single cell (W303)...