Loading...
Search for: doubly-fed-induction-generator
0.008 seconds
Total 57 records

    Failure Modes and Effects Analysis (FMEA) for wind turbines

    , Article International Journal of Electrical Power and Energy Systems ; Volume 32, Issue 7 , 2010 , Pages 817-824 ; 01420615 (ISSN) Arabian Hoseynabadi, H ; Oraee, H ; Tavner, P. J ; Sharif University of Technology
    2010
    Abstract
    The Failure Modes and Effects Analysis (FMEA) method has been used to study the reliability of many different power generation systems. This paper now applies that method to a wind turbine (WT) system using a proprietary software reliability analysis tool. Comparison is made between the quantitative results of an FMEA and reliability field data from real wind turbine systems and their assemblies. These results are discussed to establish relationships which are useful for future wind turbine designs. The main system studied is an existing design 2 MW wind turbine with a Doubly Fed Induction Generator (DFIG), which is then compared with a hypothetical wind turbine system using the Brushless... 

    Wind turbine productivity considering electrical subassembly reliability

    , Article Renewable Energy ; Volume 35, Issue 1 , 2010 , Pages 190-197 ; 09601481 (ISSN) Arabian-Hoseynabadi, H ; Oraee, H ; Tavner, P.J ; Sharif University of Technology
    2010
    Abstract
    This paper proposes a reliability model for the electrical subassemblies of geared wind turbine systems with induction generators. The model is derived considering the failure of main subassemblies and their parameters are calculated. A productivity comparison is performed between the selected wind turbine systems including reliability issues. Two methods of modification for variable-speed wind turbines with Doubly Fed Induction Generators (DFIG) to improve their availability are finally suggested  

    Reliability comparison of direct-drive and geared-drive wind turbine concepts

    , Article Wind Energy ; Volume 13, Issue 1 , 2010 , Pages 62-73 ; 10954244 (ISSN) Arabian Hoseynabadi, H ; Tavner, P. J ; Oraee, H ; Sharif University of Technology
    Abstract
    This paper proposes for wind turbines (WTs) an analytical reliability method, used on other engineering systems, to compare the reliability of different turbine concepts. The main focus of the paper is to compare the reliability of geared generator and direct-drive concept WTs. Modification methods are also recommended for improving the availability of WTs and geared generator concept incorporating doubly fed induction generator  

    Modification of DFIG's active power control loop for speed control enhancement and inertial frequency response

    , Article IEEE Transactions on Sustainable Energy ; Volume 8, Issue 4 , 2017 , Pages 1772-1782 ; 19493029 (ISSN) Ashouri Zadeh, A ; Toulabi, M ; Bahrami, S ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    This paper proposes a fuzzy-based speed controller for the doubly fed induction generator (DFIG)-based wind turbines with the rotor speed and wind speed inputs. The controller parameters are optimized using the particle swarm optimization algorithm. To accelerate tracking the maximum power point trajectory, the conventional controller is augmented with a feed-forward compensator, which uses the wind speed input and includes a high-pass filter. The proposed combined speed controller is robust against wind measurement errors and as the accuracy of anemometers increases the speed regulation tends toward the ideal controller. The cutoff frequency of the applied filter is determined considering a... 

    Integration of wind turbines in distribution systems and development of an adaptive overcurrent relay coordination scheme with considerations for wind speed forecast uncertainty

    , Article IET Renewable Power Generation ; Volume 14, Issue 15 , 2020 , Pages 2983-2992 Dindar, A ; Mohammadi Ardehali, M ; Vakilian, M ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    The integration of renewable energy (RE)-based distributed generation (DG) with electric power distribution systems (DSs) in association with smart grid technology has numerous benefits, however, due to their intermittent nature, the utilisation of RE-based DG may pose threats to the proper operation of conventional overcurrent (OC) protection schemes. The resulting threats, malfunctions, and non-selective actions could occur by relays within the DS, and the development of efficient protection schemes is necessary. The objective of this study is to propose and simulate an adaptive OC protection scheme in DSs in the presence of doubly-fed induction generator (DFIG) wind turbines based on wind... 

    Robustness investigation of the linear multi-variable control technique for power management of DFIG wind turbines

    , Article International Journal of Advanced Mechatronic Systems ; Volume 5, Issue 1 , 2013 , Pages 37-46 ; 17568412 (ISSN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    2013
    Abstract
    Variable speed wind turbines are widely used in the modern power industry. These turbines that are usually driven by doubly fed induction generators (DFIGs) contain two groups of controlling variables; mechanical variables like pitch angle and electrical variables like rotor voltage. During the turbine operation, with variable wind velocity, power must be managed in two regimes; power optimisation and power limitation. In the current research, initially a non-linear simulation, based on the general wind turbine dynamic model is presented. Then, the desired controllers for both pitch angle and generator voltage components are constructed. After designing the controller, in order to... 

    Linear multi-variable control technique for smart power management of wind turbines

    , Article 2012 International Conference onAdvanced Mechatronic Systems, ICAMechS 2012 ; 2012 , Pages 559-564 ; 9780955529382 (ISBN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    2012
    Abstract
    Variable speed wind turbines are widely used in the modern power industry. These turbines that are usually driven by doubly fed induction generators (DFIG) contain two groups of controlling variables; mechanical variables like pitch angle, and electrical variables like rotor voltage. During the turbine operation, with variable wind speed, power must be managed in two different regimes; power optimization and power limitation. In the current research, initially a non-linear simulation, based on the general wind turbine dynamic model is presented. Then, the desired controllers for both pitch angle and generator voltage components are constructed. To validate turbine behavior and controller... 

    Toward a comprehensive model of large-scale dfig-based wind farms in adequacy assessment of power systems

    , Article IEEE Transactions on Sustainable Energy ; Vol. 5, issue. 1 , 2014 , p. 55-63 ; ISSN: 19493029 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Sharif University of Technology
    Abstract
    With the current focus on energy and environment, efficient integration of renewable energies, especially wind energy into power systems, is becoming essential. Furthermore, to fully capture wind potentials and to recognize the unique characteristics associated with wind energy in power systems adequacy analysis, a profound inquiry is required. In this way, this paper tries to establish a comprehensive analytical approach for reliability modeling of doubly-fed induction generator (DFIG)-based wind farms. First, the most impressive components of wind turbines are introduced. It then continues with integrating developed state space model of wind turbines and their production uncertainties,... 

    Toward a comprehensive model of large-scale dfig-based wind farms in adequacy assessment of power systems

    , Article IEEE Transactions on Sustainable Energy ; Vol. 5, issue. 1 , 2014 , p. 55-63 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Sharif University of Technology
    Abstract
    With the current focus on energy and environment, efficient integration of renewable energies, especially wind energy into power systems, is becoming essential. Furthermore, to fully capture wind potentials and to recognize the unique characteristics associated with wind energy in power systems adequacy analysis, a profound inquiry is required. In this way, this paper tries to establish a comprehensive analytical approach for reliability modeling of doubly-fed induction generator (DFIG)-based wind farms. First, the most impressive components of wind turbines are introduced. It then continues with integrating developed state space model of wind turbines and their production uncertainties,... 

    Appropriate crowbar protection for improvement of brushless DFIG LVRT during asymmetrical voltage dips

    , Article International Journal of Electrical Power and Energy Systems ; Volume 95 , 2018 , Pages 1-10 ; 01420615 (ISSN) Gholizadeh, M ; Tohidi, S ; Oraee, A ; Oraee, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper proposes effective approach for determining appropriate crowbar resistance value to be able to improve the brushless doubly fed induction generator ride through capability during any asymmetrical voltage dip scenarios. The brushless DFIG has great potential for wind power plants particularly in offshore applications where maintenance is a major concern. Dynamic behavior of the machine is studied using two axis model and a more precise equivalent circuit model is extracted for analyzing machine behavior under fault conditions. Important limits and constraints in the use of crowbar are identified and discussed in detail. It is shown that large crowbar values can lead to considerable... 

    An analytical study for low voltage ride through of the brushless doubly-fed induction generator during asymmetrical voltage dips

    , Article Renewable Energy ; Volume 115 , 2018 , Pages 64-75 ; 09601481 (ISSN) Gholizadeh, M ; Oraee, A ; Tohidi, S ; Oraee, H ; McMahon, R. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The Brushless Doubly-fed Induction Generator (BDFIG) has high potential for wind energy systems, especially for offshore applications where minimum maintenance is vital. The machine low voltage ride through (LVRT) capability in the light of current grid code requirements was investigated using a precise dynamic model. This is particularly important for future multi- MW BDFIGs. This paper shows the necessity for improvements of the BDFIG LVRT capability with presenting a comprehensive analytical study during asymmetrical voltage dips. Analytical studies are conducted to extract a more precise equivalent circuit model of the BDFIG used for analyzing machine dynamic behavior under various fault... 

    Doubly fed induction generators to enhance inter-area damping based on a Robust controller: H2/ H∞ Control

    , Article SN Applied Sciences ; Volume 3, Issue 1 , 2021 ; 25233971 (ISSN) Goodarzi, A ; Ranjbar, A. M ; Dehghani, M ; Ghasemi Garpachi, M ; Ghiasi, M ; Sharif University of Technology
    Springer Nature  2021
    Abstract
    In this study, an auxiliary damping controller based on a robust controller considering the active and reactive power control loops for a doubly-fed induction generator for wind farms is proposed. The presented controller is able to improve the inter-area oscillation damping. In addition, the proposed controller applies only one accessible local signal as the input; however, it can improve the inter-area oscillation damping and, consequently the system stability for the various working conditions and uncertainties. The oscillatory modes of the system are appointed using the linear analysis. Then, the controller’s parameters are determined using the robust control approaches (H∞/ H2) with the... 

    Calculation of core and stray load losses in brushless doubly fed induction generators

    , Article IEEE Transactions on Industrial Electronics ; Vol. 61, issue. 7 , 2014 , pp. 3167-3177 ; SSN: 02780046 Gorginpour, H ; Oraee, H ; Abdi, E ; Sharif University of Technology
    Abstract
    The brushless doubly fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind generator. However, it suffers from lower efficiency and larger dimensions in comparison with the doubly fed induction generator. A major part of drawbacks arises from undesirable spatial harmonics of air-gap magnetic field. Calculation of core loss is an important issue in optimal design studies to improve the performance characteristics. The iron loss is higher and has a more complex nature in BDFIGs in contrast with conventional machines. Furthermore, additional losses cannot be ignored due to a high level of spatial harmonics distortion. This paper aims to... 

    Magnetic equivalent circuit modelling of brushless doubly-fed induction generator

    , Article IET Renewable Power Generation ; Vol. 8, Issue. 3 , 2014 , pp. 334-346 ; ISSN: 1752-1416 Gorginpour, H ; Jandaghi, B ; Oraee, H ; Abdi, E ; Sharif University of Technology
    Abstract
    The brushless doubly-fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind turbine generator. The aim of this work is to present a nodal-based magnetic equivalent circuit (MEC) model of the BDFIG which provides performance characteristics and flux density distributions. The model takes into account stator winding distributions, special configuration of rotor bars, slotting effects, teeth saturation, flux fringing and current displacement effects. The real flux tubes are considered for creating an MEC network and calculating its non-linear elements. A method for simplifying the rotor magnetic network has been applied and Gauss elimination... 

    Electromagnetic-thermal design optimization of the brushless doubly fed induction generator

    , Article IEEE Transactions on Industrial Electronics ; Vol. 61, issue. 4 , October , 2014 , PP. 1710-1721 ; ISSN: 02780046 Gorginpour, H ; Oraee, H ; McMahon, R. A ; Sharif University of Technology
    Abstract
    In view of its special features, the brushless doubly fed induction generator (BDFIG) shows high potentials to be employed as a variable-speed drive or wind generator. However, the machine suffers from low efficiency and power factor and also high level of noise and vibration due to spatial harmonics. These harmonics arise mainly from rotor winding configuration, slotting effects, and saturation. In this paper, analytical equations are derived for spatial harmonics and their effects on leakage flux, additional loss, noise, and vibration. Using the derived equations and an electromagnetic-thermal model, a simple design procedure is presented, while the design variables are selected based on... 

    A novel modeling approach for design studies of brushless doubly fed induction generator based on magnetic equivalent circuit

    , Article IEEE Transactions on Energy Conversion ; Volume 28, Issue 4 , 2013 , Pages 902-912 ; 08858969 (ISSN) Gorginpour, H ; Oraee, H ; McMahon, R. A ; Sharif University of Technology
    2013
    Abstract
    Brushless doubly fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind turbine generator. However, it suffers from lower efficiency and larger dimensions in comparison to DFIG. Hence, optimizing the BDFIG structure is necessary for enhancing its situation commercially. In previous studies, a simple model has been used in BDFIG design procedure that is insufficiently accurate. Furthermore, magnetic saturation and iron loss are not considered because of difficulties in determination of flux density distributions. The aim of this paper is to establish an accurate yet computationally fast model suitable for BDFIG design studies. The proposed... 

    A novel rotor configuration for brushless doubly-fed induction generators

    , Article IET Electric Power Applications ; Volume 7, Issue 2 , 2013 , Pages 106-115 ; 17518660 (ISSN) Gorginpour, H ; Jandaghi, B ; Oraee, H ; Sharif University of Technology
    2013
    Abstract
    Brushless Doubly-Fed Induction Generator has attractive features to be the first choice in next generation of wind generators. However, its efficiency and power-to-weight ratio are slightly lower in comparison to induction machine with the same rating. Considerable part of these imperfections arises from the rotor design, which produces magnetic field with considerable undesirable spatial harmonics. This paper proposes a novel rotor configuration to reduce spatial harmonic distortion of air-gap magnetic field as well as improving some drawbacks of the conventional structure, including unequal magnitudes of rotor bar currents, teeth saturation at low average air gap magnetic fields, high core... 

    The impact of wind farms with doubly fed induction generators on power system electromechanical oscillations

    , Article Renewable Energy ; Volume 50 , 2013 , Pages 780-785 ; 09601481 (ISSN) Jafarian, M ; Ranjbar, A. M ; Sharif University of Technology
    2013
    Abstract
    Introduction of large amounts of new wind generation can affect the small signal stability of power systems with three mechanisms: displacing synchronous generators (SGs); reducing SGs power generation; and the dynamics of wind farms (WFs) interacting with the electromechanical mode of SGs. In this paper a novel approach is developed to investigate the impact of the latter mechanism on existing power systems oscillations. In this approach, the dynamic behavior of grid connected WFs is studied independent of the dynamic behavior of system SGs. This approach helps to identify the conditions in which the dynamics of WFs may interact with the electromechanical mode of SGs. Also it helps to... 

    Spare parts management algorithm for wind farms using structural reliability model and production estimation

    , Article IET Renewable Power Generation ; Volume 10, Issue 7 , Volume 10, Issue 7 , 2016 , Pages 1041-1047 ; 17521416 (ISSN) Mani, S ; Oraee, A ; Oraee, H ; Sharif University of Technology
    Institution of Engineering and Technology 
    Abstract
    Doubly fed induction generators (DFIGs) are widely used in wind power systems; hence their reliability model is an important consideration for production assessment and economic analysis of wind energy conversion systems. However, to date mutual influences of reliability analysis, production estimations and economic assessments of wind farms have not been fully investigated. This study proposes a reliability model for DFIG wind turbines considering their subcomponent failure rates and downtimes. The proposed production estimation algorithm leads to an economic assessment for wind farms. A comprehensive spare parts management procedure is then presented in the study. As a case study,... 

    Improved generic model of variable speed wind turbines for dynamic studies

    , Article IEEE Transactions on Sustainable Energy ; Volume 11, Issue 4 , October , 2020 , Pages 2162-2173 Mirnezhad, H ; Ravanji, M. H ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Fast growth of wind power generation and its contribution in power systems dynamic performance has highlighted the importance of developing generic models for wind turbines. Following the former efforts, an enhanced version of standard generic wind turbine model is proposed in this article. The enhancements are aimed to make the model applicable for unbalanced Root Mean Square (RMS), short-Term frequency stability, and low-voltage ride-Through (LVRT) studies. Moreover, fidelity of the overall responses of the model is increased. To achieve these goals, five new blocks are designed and added to the base model and three existing blocks are modified. The new blocks are negative-sequence...