Loading...
Search for: doubly-fed-induction-generator
0.008 seconds
Total 57 records

    Toward a comprehensive model of large-scale dfig-based wind farms in adequacy assessment of power systems

    , Article IEEE Transactions on Sustainable Energy ; Vol. 5, issue. 1 , 2014 , p. 55-63 ; ISSN: 19493029 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Sharif University of Technology
    Abstract
    With the current focus on energy and environment, efficient integration of renewable energies, especially wind energy into power systems, is becoming essential. Furthermore, to fully capture wind potentials and to recognize the unique characteristics associated with wind energy in power systems adequacy analysis, a profound inquiry is required. In this way, this paper tries to establish a comprehensive analytical approach for reliability modeling of doubly-fed induction generator (DFIG)-based wind farms. First, the most impressive components of wind turbines are introduced. It then continues with integrating developed state space model of wind turbines and their production uncertainties,... 

    Calculation of core and stray load losses in brushless doubly fed induction generators

    , Article IEEE Transactions on Industrial Electronics ; Vol. 61, issue. 7 , 2014 , pp. 3167-3177 ; SSN: 02780046 Gorginpour, H ; Oraee, H ; Abdi, E ; Sharif University of Technology
    Abstract
    The brushless doubly fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind generator. However, it suffers from lower efficiency and larger dimensions in comparison with the doubly fed induction generator. A major part of drawbacks arises from undesirable spatial harmonics of air-gap magnetic field. Calculation of core loss is an important issue in optimal design studies to improve the performance characteristics. The iron loss is higher and has a more complex nature in BDFIGs in contrast with conventional machines. Furthermore, additional losses cannot be ignored due to a high level of spatial harmonics distortion. This paper aims to... 

    Low voltage ride-through of DFIG and brushless DFIG: Similarities and differences

    , Article Electric Power Systems Research ; Vol. 110 , May , 2014 , p. 64-72 ; ISSN: 03787796 Tohidi, S ; Tavner, P ; McMahon, R ; Oraee, H ; Zolghadri, M. R ; Shao, S ; Abdi, E ; Sharif University of Technology
    Abstract
    The brushless doubly fed induction generator (BDFIG) has been proposed as a viable alternative in wind turbines to the commonly used doubly fed induction generator (DFIG). The BDFIG retains the benefits of the DFIG, i.e. variable speed operation with a partially rated converter, but without the use of brush gear and slip rings, thereby conferring enhanced reliability. As low voltage ride-through (LVRT) performance of the DFIG-based wind turbine is well understood, this paper aims to analyze LVRT behavior of the BDFIG-based wind turbine in a similar way. In order to achieve this goal, the equivalence between their two-axis model parameters is investigated. The variation of flux linkages,... 

    Magnetic equivalent circuit modelling of brushless doubly-fed induction generator

    , Article IET Renewable Power Generation ; Vol. 8, Issue. 3 , 2014 , pp. 334-346 ; ISSN: 1752-1416 Gorginpour, H ; Jandaghi, B ; Oraee, H ; Abdi, E ; Sharif University of Technology
    Abstract
    The brushless doubly-fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind turbine generator. The aim of this work is to present a nodal-based magnetic equivalent circuit (MEC) model of the BDFIG which provides performance characteristics and flux density distributions. The model takes into account stator winding distributions, special configuration of rotor bars, slotting effects, teeth saturation, flux fringing and current displacement effects. The real flux tubes are considered for creating an MEC network and calculating its non-linear elements. A method for simplifying the rotor magnetic network has been applied and Gauss elimination... 

    Electromagnetic-thermal design optimization of the brushless doubly fed induction generator

    , Article IEEE Transactions on Industrial Electronics ; Vol. 61, issue. 4 , October , 2014 , PP. 1710-1721 ; ISSN: 02780046 Gorginpour, H ; Oraee, H ; McMahon, R. A ; Sharif University of Technology
    Abstract
    In view of its special features, the brushless doubly fed induction generator (BDFIG) shows high potentials to be employed as a variable-speed drive or wind generator. However, the machine suffers from low efficiency and power factor and also high level of noise and vibration due to spatial harmonics. These harmonics arise mainly from rotor winding configuration, slotting effects, and saturation. In this paper, analytical equations are derived for spatial harmonics and their effects on leakage flux, additional loss, noise, and vibration. Using the derived equations and an electromagnetic-thermal model, a simple design procedure is presented, while the design variables are selected based on... 

    Toward a comprehensive model of large-scale dfig-based wind farms in adequacy assessment of power systems

    , Article IEEE Transactions on Sustainable Energy ; Vol. 5, issue. 1 , 2014 , p. 55-63 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Sharif University of Technology
    Abstract
    With the current focus on energy and environment, efficient integration of renewable energies, especially wind energy into power systems, is becoming essential. Furthermore, to fully capture wind potentials and to recognize the unique characteristics associated with wind energy in power systems adequacy analysis, a profound inquiry is required. In this way, this paper tries to establish a comprehensive analytical approach for reliability modeling of doubly-fed induction generator (DFIG)-based wind farms. First, the most impressive components of wind turbines are introduced. It then continues with integrating developed state space model of wind turbines and their production uncertainties,... 

    Five-leg converter topology for wind energy conversion system with doubly fed induction generator

    , Article Renewable Energy ; Volume 36, Issue 11 , 2011 , Pages 3187-3194 ; 09601481 (ISSN) Shahbazi, M ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    Abstract
    In this paper, application of a five-leg converter in Doubly Fed Induction Generator (DFIG) for Wind Energy Conversion Systems (WECS) is investigated. The five-leg structure and its PWM control are studied and performances are compared with the classical six-leg topology. The main drawback of five-leg converter with respect to the six-leg back-to-back converter is the need to increase the dc-link voltage for the same operation point, i.e. the same powers in case of WECS. So, different methods for the reduction of the required dc-link voltage in the five-leg case are studied. The five-leg converter is used to replace the conventional six-leg one, with the same ability. For the performance... 

    Coordinated control approaches for low-voltage ride-through enhancement in wind turbines with doubly fed induction generators

    , Article IEEE Transactions on Energy Conversion ; Volume 25, Issue 3 , 2010 , Pages 873-883 ; 08858969 (ISSN) Rahimi, M ; Parniani, M ; Sharif University of Technology
    Abstract
    This paper deals with the coordinated control of rotor- and grid-side converters in wind turbines with doubly fed induction generators (DFIGs) to improve the low-voltage ride-through capability. The rotor-side converter control and additional equipment, called stator damping resistor, are used to limit the rotor inrush current and to reduce the oscillations and settling time of DFIG transient response during the voltage dip. Also, the grid-side converter is controlled to limit the dc-link overvoltage during the voltage drop. It is found that the dynamics of the grid-side converter and dc-link voltage exhibit nonminimum phase behavior, and thus there is an inherent limitation on the... 

    Reliability comparison of direct-drive and geared-drive wind turbine concepts

    , Article Wind Energy ; Volume 13, Issue 1 , 2010 , Pages 62-73 ; 10954244 (ISSN) Arabian Hoseynabadi, H ; Tavner, P. J ; Oraee, H ; Sharif University of Technology
    Abstract
    This paper proposes for wind turbines (WTs) an analytical reliability method, used on other engineering systems, to compare the reliability of different turbine concepts. The main focus of the paper is to compare the reliability of geared generator and direct-drive concept WTs. Modification methods are also recommended for improving the availability of WTs and geared generator concept incorporating doubly fed induction generator  

    A control scheme to enhance low voltage ride-through of brushless doubly-fed induction generators

    , Article Wind Energy ; Volume 19, Issue 9 , 2016 , Pages 1699-1712 ; 10954244 (ISSN) Tohidi, S ; Oraee, H ; Zolghadri, M. R ; Rahimi, M ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    The use of brushless doubly-fed induction generator has been recently proposed for wind turbines because of its variable speed operation with fractional size converter without the need to brush and slip ring. This paper introduces a control scheme to improve low voltage ride-through capability of doubly-fed induction generator considering grid code requirements. The proposed control strategy is based on analysis of flux linkages and back electromotive forces and intends to retain the control-winding current below the safety limit (typically 2 pu) during severe voltage dips. The time-domain simulations validate effectiveness of the proposed scheme to protect the converter against failure as... 

    Spare parts management algorithm for wind farms using structural reliability model and production estimation

    , Article IET Renewable Power Generation ; Volume 10, Issue 7 , Volume 10, Issue 7 , 2016 , Pages 1041-1047 ; 17521416 (ISSN) Mani, S ; Oraee, A ; Oraee, H ; Sharif University of Technology
    Institution of Engineering and Technology 
    Abstract
    Doubly fed induction generators (DFIGs) are widely used in wind power systems; hence their reliability model is an important consideration for production assessment and economic analysis of wind energy conversion systems. However, to date mutual influences of reliability analysis, production estimations and economic assessments of wind farms have not been fully investigated. This study proposes a reliability model for DFIG wind turbines considering their subcomponent failure rates and downtimes. The proposed production estimation algorithm leads to an economic assessment for wind farms. A comprehensive spare parts management procedure is then presented in the study. As a case study,... 

    An input-to-state stability approach to inertial frequency response analysis of doubly-fed induction generator-based wind turbines

    , Article IEEE Transactions on Energy Conversion ; Volume 32, Issue 4 , 2017 , Pages 1418-1431 ; 08858969 (ISSN) Toulabi, M ; Bahrami, S ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    Due to the proliferation of wind turbines in power networks, participation of doubly-fed induction generator (DFIG)-based wind turbines in the frequency regulation task is attracting more attention during recent decades. It is a challenge to design an effective DFIG's auxiliary frequency controller, since back-to-back converters used in DFIG make the possibility of large deviations in current and speed of rotor during frequency support period. Hence, it is necessary to use exact expression of DFIG's output power in the frequency-related studies. This paper addresses this challenge by developing a nonlinear dynamic model for the DFIG's output power integrated into the dynamic model of power... 

    Modification of DFIG's active power control loop for speed control enhancement and inertial frequency response

    , Article IEEE Transactions on Sustainable Energy ; Volume 8, Issue 4 , 2017 , Pages 1772-1782 ; 19493029 (ISSN) Ashouri Zadeh, A ; Toulabi, M ; Bahrami, S ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    This paper proposes a fuzzy-based speed controller for the doubly fed induction generator (DFIG)-based wind turbines with the rotor speed and wind speed inputs. The controller parameters are optimized using the particle swarm optimization algorithm. To accelerate tracking the maximum power point trajectory, the conventional controller is augmented with a feed-forward compensator, which uses the wind speed input and includes a high-pass filter. The proposed combined speed controller is robust against wind measurement errors and as the accuracy of anemometers increases the speed regulation tends toward the ideal controller. The cutoff frequency of the applied filter is determined considering a... 

    Direct Torque Control of Doubly-Fed Induction Motor

    , M.Sc. Thesis Sharif University of Technology Moayedi, Ali (Author) ; Kaboli, Shahriyar (Supervisor)
    Abstract
    Conventional induction motors are controlled by stator voltage, so the inverter should pass the full power of the motor. In the doubly-fed rotor wound induction motors, the nominal power of inverter can be reduced. Therefore, these types of machines have been concerned in recent decades and they are able to use as alternative for high power conventional induction machines in the future. Direct torque control is one of the well known methods for controlling the induction motors. Fast torque response and independence of machine parameters (except winding resistance). In this thesis, different sterategies of direct torque control of doubly fed induction motors are presented. In the first... 

    Improvement of DFIG Under Unbalanced Voltage Condition

    , M.Sc. Thesis Sharif University of Technology Karimi Khouzani, Hadi (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    In this thesis, performance of doubly fed induction generators in wind turbine, under stator unbalanced voltage condition has been studied. Therefore, beside of presenting related equations and models for DFIG, drawbacks of DFIG performance under unbalanced voltage condition on variables such as electric torque, active and reactive stator power and stator current have been shown. Then, controller have been designed in the way that can eliminate electric torque oscillation, active power oscillation, negative sequences of stator current and rotor current. The controller is designed base on decoupling sequences in synchronous reference and stator voltage orientation method(SVO) that consist of... 

    Reliability Model of Wind Turbine System with BDFG

    , Ph.D. Dissertation Sharif University of Technology Arabian, Hooman (Author) ; Oraee, Hashem (Supervisor) ; Fotuhi Firouzabad, Mahmud (Supervisor)
    Abstract
    Considerable attention has been given in recent years to renewable energy sources due to concerns about dwindling fuel reserves and the potential impact of conventional energy systems on the environment. Wind power is one form of renewable energy resources and also considered as Dispersed Generation (DG). Widespread utilization of wind power imposes many effects on planning and operation of power system. In other side, reliability evaluation and enhancement is an important factor in modern power system planning and operation. So, reliability assessment of wind turbines is of great importance and will receive more attention in the future according to increase of WT utilization. The... 

    Analysis and Improvement of Dynamic Performance and Fault Ride-Through Capability of Wind Turbines Based on Doubly-Fed Induction Generators

    , Ph.D. Dissertation Sharif University of Technology Rahimi Kelishadi, Mohsen (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    Variable speed wind turbines (VSWTs) provide the capability of wide speed operation and independent control of active and reactive power. In contrast to the fixed speed WTs, they have higher efficiency, power quality and controllability. VSWTs are mainly divided in two categories: WTs based on doubly fed induction generator (DFIG) and WTs based on full converter with permanent magnet synchronous generator.
    At now, among the different alternatives to obtain VSWTs, DFIGs are the most commonly used. This is because the voltage source converter (VSC) in DFIG has to handle a fraction of the total power under steady state conditions, and thus the size and cost of the converter is reduced.... 

    Analysis and Improvement of Dynamic Behavior of Brushless Doubly-Fed Induction Generator in Wind Turbines

    , M.Sc. Thesis Sharif University of Technology Tohidi, Sajjad (Author) ; Oraee Mirzamani, Hashem (Supervisor) ; Zolghadri, Mohammad Reza (Supervisor)
    Abstract
    Recently, the brushless doubly fed induction generator (BDFIG) has been proposed to be used in wind turbines due to variable speed operation with fractionally size power electronic converter and without brushes and slip rings. In this thesis, for the first time, LVRT capability of BDFIG has been assessed regarding the grid codes and several approaches have been suggested for improving it. Firstly, the steady-state performance of the BDFIG in different operating modes has been investigated and required tests have been performed. In addition, a new operating mode named as "double cascade mode" has been introduced. The fault-on performance of BDFIG has also been studied by means of torque-speed... 

    Fault Tolerant AC/DC/AC Converters for Wind Energy Turbine with Doubly-Fed Induction Generator

    , Ph.D. Dissertation Sharif University of Technology Shahbazi, Mahmoud (Author) ; Zolghadri, Mohammad Reza (Supervisor) ; Saadate, Shahrokh (Supervisor)
    Abstract
    AC/DC/AC converters are widely being used in a variety of power applications. Continuity of service of these systems, as well as their reliability and performance are now of the major concerns. Indeed, the failure of the converter can lead to the total or partial loss of the control of the phase currents and can cause serious system malfunction or even shutdown. Thus, uncompensated faults can quickly endanger the system. Therefore, to prevent the spread of the fault to the other system components and to ensure continuity of service, fault tolerant converter topologies associated with quick and effective fault detection and compensation methods must be implemented. In this thesis, the... 

    Study of HVDC Transmission for Offshore Wind Farms Based on Voltage Source Converters

    , M.Sc. Thesis Sharif University of Technology Safaeian, Reza (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    In this thesis, DC transmission of offshore wind farms is studied thoroughly. Various system configurations that are introduced in the literatures are discussed and their control scheme for normal conditions and grid faults are studied. Then, the HVDC transmission based on voltage source converter, located between a local offshore ac grid and the onshore ac system is investigated as the most practical choice. The HVDC linke circuit elements are calculated and the control strategies of the offshore and onshore converters are introduced. DFIGs are considered to be the best choice for the offshore wind turbine generators. Then, the system is simulated and the frequency of the offshore grid is...