Loading...
Search for: droplet
0.007 seconds
Total 154 records

    Evaluation of chemicals interaction with heavy crude oil through water/oil emulsion and interfacial tension study

    , Article Energy and Fuels ; Vol. 27, issue. 10 , September , 2013 , p. 5852-5860 ; ISSN: 08870624 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    A newly-designed surfactant was formulated to tolerate the harsh conditions of oil reservoirs, including high salinity of the formation brine and temperature. The specific emulsion and interfacial tension (IFT) behavior of this new surface active agent were investigated by performing emulsion stability tests, emulsion size analysis, and IFT behavior in the presence of four different types of alkalis. Image processing was utilized to analyze the droplet size distribution using microscopic images of the samples. The results show that depending on the composition of the mixtures, the optimum phase region and interfacial tension behavior change considerably. Solutions containing a higher... 

    Numerical study on the oscillation of a transient bubble near a confined free surface for droplet generation

    , Article Theoretical and Computational Fluid Dynamics ; Vol. 28, issue. 4 , 2014 , p. 449-472 Saleki-Haselghoubi, N ; Shervani-Tabar, M.T ; Taeibi-Rahni, M ; Dadvand, A ; Sharif University of Technology
    Abstract
    In the present work, the oscillation of a spark-created bubble near a confined water-air interface and the ensuing droplet generation and ejection are studied numerically using the boundary element method. The interface is accorded by the top opening of either one of the following symmetrical configurations, which are distinguished by the value of angle between their vertical symmetry axis and lateral wall (i.e., θ): (i) a centrally perforated horizontal flat plate (θ = 90°) and (ii) vertically placed cylinder (θ = 0°), nozzle (θ > 0°) and diffuser (θ < 0°). Furthermore, the influences of the effective parameters such as the strength parameter (i.e., the intensity of local energy input), the... 

    Morphology of nanodroplets on structured surfaces

    , Article Journal of Physics D: Applied Physics ; Volume 46, Issue 21 , May , 2013 ; 00223727 (ISSN) Vahid, A ; Moosavi, A ; Sharif University of Technology
    2013
    Abstract
    We report different morphologies of nanodroplets over various topographical features of the supporting substrates. The effects of different parameters such as the profile of the disjoining pressure, droplet size and the geometrical parameters are studied and discussed. Also, the effects of a coating layer on the surface of the substrate are determined. It is demonstrated that the nanodroplets at some positions are not stable and gradually move to more stable positions so that the system has less energy. For grooves this results in a series of morphology diagrams of the nanodroplets over the grooves as a function of the grooves' width and the liquid volume  

    Breakup of microdroplets in asymmetric T junctions

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 87, Issue 5 , 2013 ; 15393755 (ISSN) Samie, M ; Salari, A ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    Symmetric T junctions have been used widely in microfluidics to generate equal-sized microdroplets, which are applicable in drug delivery systems. A newly proposed method for generating unequal-sized microdroplets at a T junction is investigated theoretically and experimentally. Asymmetric T junctions with branches of identical lengths and different cross sections are utilized for this aim. An equation for the critical breakup of droplets at asymmetric T junctions and one for determining the breakup point of droplets are developed. A good agreement was observed between the theories (present and previous) and the experiments  

    Breakup of droplets in micro and nanofluidic T-junctions

    , Article Journal of Applied Fluid Mechanics ; Volume 6, Issue 1 , 2013 , Pages 81-86 ; 17353572 (ISSN) Bedram, A ; Moosavi, A ; Sharif University of Technology
    2013
    Abstract
    We employ numerical simulations to investigate the breakup of droplets in micro- and nanoscale T junctions, which are used to produce small droplets from a large droplet. For this purpose a Volume f Fluid (VOF) based method is used and for verifying the reliability of the numerical outcomes, the results are compared with the available experimental and analytical results. Our results reveal that breakup time and breakup length of the droplets play important roles in handling these systems optimally. Our results also indicate that for nanoscale Tjunctions by increasing the capillary number the performance increases while for the micro-scale systems there is a specific capillary number for... 

    Study of droplet behaviour along a pulsed liquid-liquid extraction column in the presence of nanoparticles

    , Article Canadian Journal of Chemical Engineering ; Volume 91, Issue 3 , 2013 , Pages 506-515 ; 00084034 (ISSN) Khoobi, N ; Bahmanyar, A ; Molavi, H ; Bastani, D ; Mozdianfard, M. R ; Bahmanyar, H ; Sharif University of Technology
    2013
    Abstract
    In this article, droplet size and its distribution along a pulsed liquid-liquid extraction column, is studied where SiO2 nanoparticles with concentrations of 0.01, 0.05 and 0.1vol.% and different hydrophobicities are applied to the dispersed phase. Using ultrasonication, nanoparticles were dispersed in kerosene as the base fluid. Nanofluids' stability was ensured using a UV-vis spectrophotometer. Some 22,000 droplets were measured by photographic technique and results were compared with systems containing no-nanoparticles (Water-Acetic acid-Kerosene). Addition of nanoparticles changed the droplet shape from ellipsoidal to spherical. Also, there was a marked influence on droplet breakage and... 

    Experimental investigation of rheological and morphological properties of water in crude oil emulsions stabilized by a lipophilic surfactant

    , Article Journal of Dispersion Science and Technology ; Volume 34, Issue 3 , Feb , 2013 , Pages 356-368 ; 01932691 (ISSN) Sadeghi, M. B ; Ramazani, S. A. A ; Taghikhani, V ; Ghotbi, C ; Sharif University of Technology
    2013
    Abstract
    Rheological behavior of two crude oils and their surfactant-stabilized emulsions with initial droplet sizes ranging from 0.5 to 75 μm were investigated at various temperatures under steady and dynamic shear testing conditions. In order to evaluate the morphology and Stability of emulsions, microscopic analysis was carried out over three months and average diameter and size distribution of dispersed droplets were determined. The water content and surfactant concentration ranged from 10 to 60% vol/vol and 0.1 to 10% wt/vol, respectively. The results indicated that the rheological properties and the physical structure and stability of emulsions were significantly influenced by the water content... 

    Numerical investigation of cone angle effect on the flow field and separation efficiency of deoiling hydrocyclones

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 49, Issue 2 , February , 2013 , Pages 247-260 ; 09477411 (ISSN) Saidi, M ; Maddahian, R ; Farhanieh, B ; Sharif University of Technology
    2013
    Abstract
    In this study, the effect of cone angle on the flow field and separation efficiency of deoiling hydrocyclones is investigated taking advantage of large eddy simulation. The dynamic Smagorinsky is employed to determine the residual stress tensor of the continuous phase. The method of Lagrangian particle tracking with an optimized search algorithm (closest cell) is applied to evaluate the separation efficiency of deoiling hydrocyclone. Simulations are performed on a 35-mm deoiling hydrocyclone with the three different cone angles of 6, 10 and 20 degree. The numerical results revealed that the changes in the cone angle would affect the velocity and pressure distribution inside hydrocyclone, and... 

    Coarsening dynamics of nanodroplets on topographically structured substrates

    , Article Journal of Physics Condensed Matter ; Volume 25, Issue 4 , 2013 ; 09538984 (ISSN) Asgari, M ; Moosavi, A ; Sharif University of Technology
    2013
    Abstract
    Employing a biharmonic boundary integral method with linear elements, coarsening dynamics of nanodroplets on topographical step heterogeneity is investigated. It is shown that the step height and droplet configuration have an influential effect on the dynamics. Increasing the step height slows down the process while locating the droplets close to the step boosts the coarsening rate. Considering a slip boundary condition enhances the dynamics and reveals a transition in the droplet migration direction. Our results reveal that increasing the surface wettability weakens the dynamics. Various types of the disjoining pressure over the step are also considered and their effects on the coarsening... 

    Late-stage evolution of thin liquid coating films over step topographies

    , Article Advanced Materials Research ; Volume 569 , 2012 , Pages 560-563 ; 10226680 (ISSN) ; 9783037854808 (ISBN) Asgari, M ; Moosavi, A ; Sharif University of Technology
    2012
    Abstract
    Mesoscopic hydrodynamic equations are solved to investigate late-stage evolution of thin liquid films over step topographies. Different geometrical parameters including step height and initial position and configuration of resultant masses of dewetting (droplets) are probed to find their effects on the mass evolution of the system. Our results indicate that increasing the step height and locating the droplets close to the step enhance the dynamics and accelerate smaller droplet collapse  

    On the motion of Newtonian and non-Newtonian liquid drops

    , Article Scientia Iranica ; Volume 19, Issue 5 , 2012 , Pages 1265-1278 ; 10263098 (ISSN) Aminzadeh, M ; Maleki, A ; Firoozabadi, B ; Afshin, H ; Sharif University of Technology
    2012
    Abstract
    In the present study, the motion of Newtonian and non-Newtonian liquid drops has been investigated experimentally. In order to investigate the effect of bulk fluid on drops, we have used water and air, as two fluids with different properties, and various industrial and biological applications. Image processing is utilized to analyze the images obtained by a high speed camera. The research has been separated into two parts. The first part has been devoted to the experiments in which air is the bulk fluid, and the second is related to the experiment carried out in water. The range of Reynolds number is, approximately, 50

    Coarsening dynamics of dewetting nanodroplets on chemically patterned substrates

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 86, Issue 1 , July , 2012 ; 15393755 (ISSN) Moosavi, A ; Sharif University of Technology
    2012
    Abstract
    Mesoscopic hydrodynamic equations are solved to investigate coarsening dynamics of two interacting nanodroplets on chemically patterned substrates. The effects of different parameters such as the surface chemical pattern, the slip length, the profile of the disjoining pressure, the size of the droplets, and the contact angles on the coarsening are studied. Our results reveal that the presence of a chemical heterogeneity can enhance or weaken the coarsening dynamics depending on the pattern type and positions of the droplets on the substrate. Also increasing the contact angles to values larger than a critical value may qualitatively change the coarsening process, and the profile of the... 

    A new method to control heat and mass transfer to work piece in a GMAW process

    , Article Journal of Process Control ; Volume 22, Issue 6 , 2012 , Pages 1087-1102 ; 09591524 (ISSN) Mousavi Anzehaee, M ; Haeri, M ; Sharif University of Technology
    2012
    Abstract
    It is proposed to employ melting rate, heat input, and detaching droplet diameter as controlled variables to control heat and mass transfer to work piece in a gas metal arc welding process. A two-layer architecture with cascade configuration of PI and MPC controllers is implemented to incorporate existing constraints on the process variables, improve transient behavior of the closed-loop responses and reduce interaction level. Computer simulation results are presented to indicate usefulness of the proposed controlled variables selection and applying two-layer control architecture to control heat and mass transfer to work piece  

    The effects of SiO 2 and K 2O on glass forming ability and structure of CaOTiO 2P 2O 5 glass system

    , Article Ceramics International ; Volume 38, Issue 4 , 2012 , Pages 3281-3290 ; 02728842 (ISSN) Ahmadi Mooghari, H. R ; Nemati, A ; Eftekhari Yekta, B ; Hamnabard, Z ; Sharif University of Technology
    2012
    Abstract
    The effects of SiO 2 and K 2O were investigated on the glass forming ability (GFA) and structural characteristics of CaOTiO 2P 2O 5 system. Differential thermal analyzer (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR and 31P magic angle spinning NMR methods were applied for characterizations of the system. Unwanted crystallization in the initial three components base glass composition was observed by adding SiO 2 and crystalline phases such as TiP 2O 7, rutile (TiO 2) and cristobalite (SiO 2) were formed in it. The results showed that K 2O prevents crystallization of glasses and promotes the formation of glass. FT-IR and X-ray diffraction showed that the addition... 

    Numerical investigation of droplets breakup in a microfluidic T-junction

    , Article Applied Mechanics and Materials ; Volume 110-116 , 2012 , Pages 3269-3277 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Bedram, A ; Moosavi, A ; Int. Assoc. Comput. Sci. Inf. Technol. (IACSIT) ; Sharif University of Technology
    2012
    Abstract
    A Volume of Fluid (VOF) method is used to stdy the breakup of droplets in T-junction geometries. Symmetric T-junctions, which are used to produce equal size droplets and have many applications in pharmacy and chemical industries, are considered. Two important factors namely "breakup time" and "breakup length" that can improve the performance of these systems have been introduced. In addition a novel system which consists of an asymmetric T-junction is proposed to produce unequal size droplets. The effects of the channel width ratio and the capillary number on the size and length of the generated droplets and also the time of the generation have been studied and discussed. For simulation the... 

    Determination of 2,4-D in environmental samples by three phases directly suspended LPME combined with HPLC-UV

    , Article Analytical Methods ; Volume 3, Issue 10 , 2011 , Pages 2261-2267 ; 17599660 (ISSN) Amani, V ; Roshan, S ; Asgharinezhad, A. A ; Najafi, E ; Abedi, H ; Tavassoli, N ; Lotfi Zadeh Zhad, H. R ; Sharif University of Technology
    Abstract
    Experimental design of directly suspended droplet liquid-liquid-liquid microextraction has been used to determine residue of 2,4-D, in environmental water samples. A free suspended droplet of 5.5 μL of receiving phase is delivered to the top-center position of 1-Octanol, which is an immiscible organic solvent, floating on the top of a 2.5 mL aqueous sample while being agitated by a stirring bar to create a mild vortex at the center of the vial. Central composite rotatable design has been used for studying the effect of the parameters, the factors interacting with each other and finding the optimum condition. The chromatographic separation was accomplished on a shim-Pak C18 column using a... 

    Droplet breakup in an asymmetric microfluidic T junction

    , Article European Physical Journal E ; Volume 34, Issue 8 , 2011 ; 12928941 (ISSN) Bedram, A ; Moosavi, A ; Sharif University of Technology
    2011
    Abstract
    Breakup of non-uniform droplets in an asymmetric T junction consisting of an inlet channel and two different-size outlet channels has been investigated numerically. Also, an analytical approach in the limit of the lubrication approximation has been extended to provide some analytical relations to study the system and verify the numerical results. Parameters that are important in the performance of the system have been determined and discussed. Our results indicate that smaller droplets can be produced by increasing the capillary number. As the geometry becomes symmetric the pressure drop decreases. Our results also reveal that the breakup time and the pressure drop for this system are... 

    Dynamics of nanodroplets on wettability gradient surfaces

    , Article Journal of Physics Condensed Matter ; Volume 23, Issue 8 , February , 2011 ; 09538984 (ISSN) Moosavi, A ; Mohammadi, A ; Sharif University of Technology
    2011
    Abstract
    A lubrication model is used to study the dynamics of nanoscale droplets on wettability gradient surfaces. The effects of the gradient size, size of the nanodroplets and the slip on the dynamics have been studied. Our results indicate that the position of the center of mass of the droplets can be well described in terms of a third-order polynomial function of the time of the motion for all the cases considered. By increasing the size of the droplets the dynamics increases. It is also shown that the slip can considerably enhance the dynamics. The results have been compared with the results obtained using theoretical models and molecular dynamics simulations  

    Effect of RE elements on the microstructural evolution of as cast and SIMA processed Mg-4Al alloy

    , Article Journal of Alloys and Compounds ; Volume 509, Issue 5 , February , 2011 , Pages 1567-1572 ; 09258388 (ISSN) Nayyeri, M. J ; Khomamizadeh, F ; Sharif University of Technology
    2011
    Abstract
    In the present article, the effect of Rare Earth elements on the microstructural development of as cast and semisolid Mg-4Al alloy produced by SIMA process is studied. Investigation conducted by metallographic observation, scanning electron microscope and quantitative metallographic methods. Results showed that alloy's dendrites turn into larger fully dendritic shape with sharp and narrow arms from equiaxed rosette type as the amount of RE elements increased from 0 through 4%. The effect of RE elements on the microstructure of the treated-alloys was detectable through elimination of vast number of intragranular liquid droplets as well as by decreasing kinetic of microstructural changes. It... 

    Formation of liquid bridges between porous matrix blocks

    , Article AIChE Journal ; Volume 57, Issue 2 , 2011 , Pages 286-298 ; 00011541 (ISSN) Dejam, M ; Hassanzadeh, H ; Sharif University of Technology
    2011
    Abstract
    It is widely accepted that, in fluid flow and transport in fractured porous media, there exists some degree of block-to-block interaction that may lead to capillary continuity. The formation of liquid bridges causing interaction between blocks will affect oil recovery from naturally fractured reservoirs. However, the accurate modeling of the growth and detachment of liquid bridges that may cause capillary continuity between matrix blocks remains a controversial topic. In an attempt to improve our understanding of the problem, a mechanistic model is developed in this work for the formation of liquid bridges between porous blocks. The proposed model considers growth and detachment of pendant...