Loading...
Search for: dye
0.016 seconds
Total 370 records

    Electrophoretic Deposition of Titanium Dioxide for Fabrication of Photoanode of Dye Sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Sedighi, Rahime (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    This research is focused on fabrication of TiO2 layers by electrophoretic deposition (EPD) for application as photoanode in Dye Sensitized Solar Cell (DSC). DSCs are third generation of solar cells, also known as the Grätzel cell, after its inventor Michael Grätzel. A DSC is composed of a porous layer of wide band gap semiconductor such as TiO2 and ZnO, covered with a molecular dye that absorbs sunlight, and a counter electrode contacted by a liquid redox electrolyte. Dye Sensitized semiconductor (photoanode) has important role in conversion of photon to electricity. To achieve higher efficiency, preparation of photoanode with high surface area resulted to enough dye adsorption is necessary.... 

    Fabrication of Dye-Sensitized Solar Cells Based on TiO2-ZnO Double Layer Nanostructured Film

    , M.Sc. Thesis Sharif University of Technology Rostami, Parand (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    In the present work, one dimensional ZnO nanostructures were grown by seed-assisted hydrothermal method. Hydrothermal processing parameters were controlled to obtain ZnO nanorods with diameter lower than 120 nm. The products were characterized by FE-SEM, EDAX, XRD, PL, and ATR-FTIR analyses. ZnO nanoparticles were also synthesized via a simple solvothermal method and their photo peropeties were compared with onedimensional nanostructures. Thereafter dye-sensitized solar cells based on TiO2-ZnO double layer nanostructured film were fabricated. It was observed that DSSC efficiency increased with decreasing the thickness of the film. The highest efficiency of 2.41% was obtained  

    Synthesis of Titania Hollow Spheres in Dye Sensitized Solar Cell Application

    , M.Sc. Thesis Sharif University of Technology Tabari Saadi, Yasaman (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    In the current research, Anatase-Rutile Titania hollow spheres were synthesized using hydrothermally prepared carbon spheres as template. Different calcination temperatures were used to remove carbon template and crysalized Titania. The characterizations for the physicochemical properties of prepared samples were carried out by XRD, FESEM, XPS, DRS, UV-Vis and FTIR.It is found that doping of carbon in the crystal structure of Titania hollow sphere, cause red shift in band gap wavelenght and the absorption wavelength edge was expanded to the visible light region and the additional diffusive electronic states were observed on the valence band spectra of samples.The photoelectric conversion... 

    Fabrication of TiO2 Dye-sensitized Solar Cells with Different Morphologies and Phase Compositions of Scattering Layer

    , M.Sc. Thesis Sharif University of Technology Musavi Gharavi, Paria Sadat (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Different types of morphologies and phase structures of crystalline TiO2 were synthesized by hydrothermal methods. For the first time, dandelion-like rutile TiO2 powder composed of numerous single crystalline nanorods was synthesized using TiCl4 as the main precursor. TiO2 Nanoparticles were produced using TTIP and 2-propanol, as precursor and solvent, respectively. Field emission scanning electron microscopy analyses revealed that the synthesized TiO2 nanoparticles had average crystallite size in the range 21–70 nm, whereas dandelion-like TiO2 showed diameter in the range 2-10 µm. According to the significant refractive index of TiO2, in particular rutile phase, it can be used in the... 

    Application of Magnetic Grapheme Oxide Coated by Modified Carboxymethyl Cellulose as a Nanoadsorbent to Dye Removal

    , M.Sc. Thesis Sharif University of Technology Shirzadeh Bilehsavar, Behrouz (Author) ; Pourjavadi, Ali (Supervisor) ; Alamolhoda, Ali Asghar (Supervisor)
    Abstract
    There are many industries in the world that produce colorized wastewater. Because of the complex structure and good solubility of dyes, such industries have problem treating this wastewaters. On the other hand, because of the toxicity of these materials for water living, dye removal from discharged wastewater of these industries is very important. In recent years, researchers have become interested in the synthesis of dye Nano adsorbents and they have published many works on this subject. The important parameters in the synthesis of such adsorbent include; non-toxicity, high adsorption capacity and easy separation. In this project, cellulose was extracted from bagasse and then CMC was... 

    Effect of TiO2-based Nanocomposite Scattering Layer on Photovoltaic Characteristics of Dye Sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Asgari Moghaddam, Hatameh (Author) ; Seyyed Reihani, Morteza (Supervisor) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Many efforts have been put into increasing the efficiency of dye-sensitized solar cells that part of it has been devoted to structure and chemical composition of photoanode electrode. In this thesis, the effect of changes in the composition and its influence on light scattering ability in photoanode of dye sensitized solar cells was studied.First, the nanoparticles of titanium dioxide powder through solvothermal method as well as spherical particle and barium titanate powder by sol-gel method were synthesized. XRD and FE-SEM analyses indicated that synthesized powders are in good size and morphology regarding the intended chemical composition. Optical properties of TiO2 particles were... 

    preparation and Evaluation of Titanium Oxide sensitized in Visible Light for Obliterating of Pollutants

    , M.Sc. Thesis Sharif University of Technology Mazloomi Tabae, Hoda Sadat (Author) ; Kazemeini, Mohammad (Supervisor) ; Rashidzade, Mehdi (Supervisor) ; Taghikhani, Vahid (Supervisor)
    Abstract
    The Dye-sensitizers loading on TiO2 is decreasing the electron excitation energy and therefore improving the photocatalytic performance from the increasing the sensitivity under visible light irradiation.in this project CoPCTS , Mordant dye and N3(Ruthenium 535) used as dye-sensitizers. Also The addition of VIII group metals on TiO2 is improving the photocatalytic activity that increasing the photocatalytic reaction rate because of the intermediation role of them for moving the conduction band electrons to electron acceptors and increasing the pair electron-holes long-life that in this case Pt loading used as a VIII group metal. In this project Titanium Isopropoxide as a precursore and... 

    Kinetics Investigation of Photocatalytic Degredation of Environmental Organic Pollutants Using ZnO-Zeolite Nano Composites

    , M.Sc. Thesis Sharif University of Technology Mohaghegh, Neda (Author) ; Gholami, Mohammad Reza (Supervisor) ; Sajadi, Ali Akbar (Supervisor)
    Abstract
    ZnO nano particles and mordnite zeolite nano particles were prepared by precipitation method and hydrothermal method,respectively. The influence of solvent and surfactant in ZnO nano particles synthesis were studied to reform the structure of nano particles.These nano particles were based on different supports to improve and enhance their photocatalytic activities. Synthesized catalysts characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform-infra red spectra (FTIR), UV-Vis spectroscopy and BET techniques. To investigated photocatalytic activity of the synthesized catalysts under UV irradiation, they were used to degradation bio-environmental... 

    Photocatalytic Dye Degradation of Wastewater Using Copper Composite Nanophotocatalyst by Advanced Oxidation Process

    , M.Sc. Thesis Sharif University of Technology Rezaei, Pardis (Author) ; Ghotbi, Cyrus (Supervisor) ; Mahmoodi, Niyaz Mohammad (Supervisor) ; Kazemeyni, Mohammad (Supervisor)
    Abstract
    Azo dyes that are the most common dyes in textile industries, are toxic and stable complex compounds. Release of this dyes in environment disturb the ecosystem and endanger human health. So selection of an appropriate method for treatment of them is a sensitive work. photocatalytic degradation is one of the best promising methods because of its perfect mineralization, middle condition and lack of creating the secondary pollutant. In this research CuO/CNT nanocomposite was synthesized and used as a photocatalyst. The surface features of CuO/CNT were surveyed by using Fourier transform infrared(FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Photocatalytic efficiency of... 

    Preparation of Mg-doped TiO2 Nanoparticles for Dye-sensitized Solar Cell Applications

    , M.Sc. Thesis Sharif University of Technology Safaee, Mahtab (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Dye-sensitized solar cell (DSSCS) is the third-generation of solar cells based on semiconductors formed between a photo sensitized anode and counter cathode which make a photo electrochemical system. They haven’t been commercially marketed due to their lower efficiency than the previous generations. In order to achieve the higher efficiency, the electron injection and light absorption must be increased. One way to increase electron injection is doping the semiconductor with an external ion to reduce lattice band gap. In this work, we made powder and Nano-structured film of titanium dioxide doped with various molar ratios of Mg by the sol-gel process. The effect of Mg:Ti molar ratio on... 

    Improvement of Light Scattering Effect of Dye –sensitized Solar Cells Aided by Different Structures of Titanium Dioxide

    , M.Sc. Thesis Sharif University of Technology Sarvari, Najmeh (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Structure and morphology of titanium dioxide have an excessive effect on the photovoltaic properties of dye-sensitized solar cells (DSCs). Different approaches have been used to improve the efficiency of these cells. One is using a scattering layer. Studies have been shown that properties of scattering layer such as composition and morphology have great effect on photovoltaic properties of solar cell. In this project, the effect of cubic morphology of TiO2 as a scattering agent in photoanode of DSCs is studied. Titanium dioxide with various morphologies including nanoparticles, solid and hollow cubic structures have been synthesized by solvothermal and hydrothermal methods, respectively. The... 

    Single Sided Dye Sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Behrouznejad, Fatemeh (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    In this project single sided dye sensitized solar cell is introduced as a new design that has both of electrodes in one side. These electrodes can be separated vertically by a thin insulator layer such as SiO2 or horizontally by lithographic method. First a metallic thin film is patterned by lithography, and then thickened by electrochemical deposition of Chromium. Platinum is electrodeposited on the substrate of counter electrode and a thin spacer layer is deposited on Platinum layer to separate it from Titanium dioxide layer.
    In Chapters 1, 2 & 3 basic science and methods which are needed for doing this project is introduced. In chapter 1 material for making a standard dye sensitized... 

    Preparation of Ag-doped TiO2 Nanostructured Films for Dye-Sensitized Solar Cells Applications

    , M.Sc. Thesis Sharif University of Technology Rahnejat, Bibi (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    Dye-sensitized solar cells (DSSCs) have been intensively studied duringthe last decade as a promising third solar cellgeneration due to their potential low-cost manufacturingprocess. DSSCsare based on a semiconductor (i.e., TiO2), formed between a photo-sensitized anode and an electrolyte. In order to reach high conversion efficiencies, it isimportant to increase the electron injection and opticalabsorption. One promising solution to increase the electroninjection is to decrease the large band gap of TiO2 bydoping a foreign ion into TiO2 lattice.
    In the present study, Ag- doped TiO2 powders and films with different Ag:Ti molar ratios are reported. The effect of dopant at.%, annealing... 

    Study and Fabrication of Dye Sensitized Solar Cells Based on Nitrogen and Neodymium Doped Titanium Dioxide Photoelectrodes

    , Ph.D. Dissertation Sharif University of Technology Shogh, Shiva (Author) ; Iraji Zad, Azam (Supervisor) ; Mohammadpour, Raheleh (Co-Advisor) ; Taghavinia, Nima (Co-Advisor)
    Abstract
    In this thesis, we focus on studying and fabrication of doped titanium dioxide electrodes and their application in nanostructured dye sensitized solar cells (DSSCs). For this purpose, non-metallic nitrogen (N) and metallic neodymium (Nd) elements were selected. N-doped titanium dioxide nanoparticles were synthesized via solvothermal method and their structural and optoelectrical properties were investigated in comparison to undoped titanium dioxide synthesized by the same method. Based on the obtained results, doping of titanium dioxide by nitrogen resulted in shifting the Fermi level up-ward, increase in charge carriers density, shift of optical absorbance to higher wavelength, and decrease... 

    Synthesis of Magnetic Adsorbent Nanocomposites based on Modified Sugarcane Bagasse and Iron Nanoparticle for dye Removal from Aqueous Solutions

    , M.Sc. Thesis Sharif University of Technology Alizadeh Monfared, Davood (Author) ; Pourjavadi, Ali (Supervisor) ; Alamolhoda, Ali Asghar (Supervisor)
    Abstract
    Lately, a wide application of eco-friendly polysaccharide-based hydrogels in waste water treatment has received enormous attention in the literature. The effluents containing dye materials from the processing industries are washed off into rivers and lakes which can be very harmful to creatures. Low-cost biopolymers and biodegradable adsorbents have been researched to be a good tool to minimize the environmental hazards caused by the industrial effluents by removal of these toxic and carcinogenic dyes from the waste effluents. In this study, an eco-friendly superabsorbent hydrogel was prepared by using of sugarcane bagasse, two hydrophilic monomers, magnetic nanoparticle and methylene... 

    Adsorption of Heavy Metals and Various Pollution from Aqueous Solutions by Vegetable Residues

    , M.Sc. Thesis Sharif University of Technology Mohebali, Sanaz (Author) ; Bastani, Dariush (Supervisor) ; Seif-Kordi, Ali Akbar (Supervisor)
    Abstract
    Celery residue modified with H2SO4 was utilized as a low-cost adsorbent for removal of hazardous dyes (methylene blue, malachite green and congo red) and heavy metals (Pb(II) and Cd(II)) from aqueous solution in batch adsorption process. Also, celery residue modified with cationic surfactant (CTAB) to enhance the removal of congo red (anionic dye). The treated and untreated adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). The efficacy of dye removal of the modified celery residue was investigated by varying adsorbent dose, contact time, pH, initial dye concentration, and temperature. Experimental data were fitted by three... 

    Picosecond and Tunable Distributed Feedback Dye Lasers

    , Ph.D. Dissertation Sharif University of Technology Pasandideh, Kaveh (Author) ; Sadighi Bonabi, Rasoul (Supervisor)
    Abstract
    Distributed feedback dye lasers are among the suitable candidates for spectroscopic applications due to their capability of producing widely tunable picosecond pulses in UV-IR region. However, the pulsewidth sensitivity of the laser to pump intensity fluctuations hinders its suitability for precision applications. In this thesis, by utilizing widely used Self Q-Switching model, we showed that if the dye solution is pumped by a narrow (sub-nanosecond) pulse, the laser can operates in the single-pulse output mode with a better stability over a wide range of pump intensity. After that, we used a dynamical model based on the induced polarization and Maxwell equations, where the obtained results... 

    Organic Pollutants Degradation in Wastewater by Ultraviolet Irradiation Process Using Nano-structured Catalyst in a Batch Reactor

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Shahin (Author) ; Kazemeini, Mohammad (Supervisor) ; Mahmoodi, Niyaz Mohammad (Supervisor) ; Baghalha, Morteza (Supervisor)
    Abstract
    Environmental issues and lack of drinking water had forced researchers to find some alternatives in order to wastewater treatment. Since dyes are used in a variety of industrial application such as textile, pharmaceutical, etc.; therefore, wastewater of these factories makes several environmental problems. Using catalysis under UV- irradiation (photocatalysis) is one of the cases that is used in wastewater treatment which the catalyst stimulated under UV- irradiation and this process degraded dyes. In this work, reactive red 198 degradation is investigated with MIL-53(Fe) and MIL-100(Fe) and in the literature section, the methods that was implemented by other researchers is studied.... 

    Dye and Cadmium Based Quantum dot Sensitized Solar Cells Based on TiO2 Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Samadpour, Mahmoud (Author) ; Iraji Zad, Azam (Supervisor) ; Taghavinia, Nima (Supervisor)
    Abstract
    In this research we focus on fabrication and characterization of Dye and Cadmium based Quantum Dot Sensitized Solar Cells (QDSCs) based on TiO2 nanostructures. TiO2 nanorods were synthesized with a simple chemical method. TiO2 nanorods, TiO2 nanorod/TiO2 and ZnO nanoparticle composite structures were integrated as photoanode in dye sensitized solar cells (DSSCs). Incorporation of TiO2 nanoparticles into the bare nanorods increased the efficiency more than 45%. Monitoring electron transport properties of the cells, pointed out the crucial role of electronic structure of composite film components on the performance of cells. Suitable morphology of TiO2 nanorods, led us to use them, to make a... 

    The Effect of Surface, Morphology, and Composition of Semiconductor Layer on the Back Reaction of Electrons in Dye Sensithized Solar Cells:Theoritical and Experimental Investigation

    , Ph.D. Dissertation Sharif University of Technology Pazoki, Meysam (Author) ; Taghavinia, Nima (Supervisor) ; Nafari, Nasser (Supervisor)
    Abstract
    This thesis deals with a theoretical and experimental investigation of different approaches for reduction of electronic recombination in the semiconductor/Dye interface of dye sensitized solar cells (DSSC) including dye coverage, core-shell structures and energy level distributions. Interface of ZnO/TiO2 in the core-shell structure have been studied by density functional theory and the energy level distribution of surface atoms, recombination and Fermi level changes, open circuit voltage and surface dipole distributions have been discussed.
    The presence of TiO2 shell increases the ZnO surface dipole moment, and shifts the ZnO conduction and valence bands to higher energies. Also, it...