Loading...
Search for: electric-network-analysis
0.013 seconds
Total 68 records

    A Bi-Level framework for expansion planning in active power distribution networks

    , Article IEEE Transactions on Power Systems ; Volume 37, Issue 4 , 2022 , Pages 2639-2654 ; 08858950 (ISSN) Kabirifar, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Pourghaderi, N ; Dehghanian, P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper presents a new framework for multistage expansion planning in active power distribution networks, in which the distribution system operator (DSO) considers active network management by clearing the local energy market at the distribution level. The proposed model is formulated as a bi-level optimization problem, where the upper level minimizes the net present value of the total costs imposed to DSO associated with the investment and maintenance of the network assets as well as the network operation, while the lower level on clearing the local energy market captures the participation of distributed energy resource (DER) owners and demand aggregators to maximize the social welfare.... 

    Closed-Form oscillatory condition in electrical circuits containing two fractional order elements

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; Volume 69, Issue 6 , 2022 , Pages 2687-2691 ; 15497747 (ISSN) Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Oscillatory condition in LTI dynamic systems is generally expressed as possessing purely imaginary solutions by their characteristic equations. Dealing with the class of fractional order systems, such a condition is equivalently restated as owing complex roots with specific arguments by a polynomial defined based on the system characteristic equation. The degree of this polynomial can be unboundedly high. Consequently, such statement for the oscillatory condition in fractional order systems, which is based on arguments of the roots of a polynomial with an unbounded degree, cannot be viewed as a closed-form expression. To tackle this challenge, this brief introduces an approach to obtain a... 

    Seismic performance and fragility analysis of power distribution concrete poles

    , Article Soil Dynamics and Earthquake Engineering ; Volume 150 , 2021 ; 02677261 (ISSN) Ghahremani Baghmisheh, A ; Mahsuli, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This paper proposes probabilistic damage and collapse models for reinforced concrete poles in electric power distribution networks and investigates the damage and collapse pattern of poles under earthquake excitations. To this end, detailed finite element models of the H-type reinforced concrete poles are developed and verified using past experimental studies as well as the observed damage in previous earthquakes. The models are then subjected to nonlinear static analyses to study the effect of the loading pattern, loading direction, concrete strength, and failure criteria on the capacity and the collapse pattern of the pole. Next, incremental dynamic analysis is carried out to investigate... 

    A unified benchmark for security and reliability assessment of the integrated chemical plant, natural gas and power transmission networks

    , Article Journal of Natural Gas Science and Engineering ; Volume 96 , 2021 ; 18755100 (ISSN) Kheirkhah Ravandi, Z ; Bozorgmehry Boozarjomehry, R ; Babaei, F ; Pishvaie, M. R ; Sharif University of Technology
    Elsevier B. V  2021
    Abstract
    This work presents a simulation framework to investigate the rigorous transient behavior of integrated systems comprising natural gas and power transmission networks, and a chemical plant whose feedstock is natural gas. This framework entails dynamic models for the gas transmission network and the SynGas plant, and a continuous-time AC-power flow formulation with dispatchable loads. It addresses the following key challenges: (i) analyzing energy and chemical system interdependencies, and their impacts on each other's supply reliability and security; (ii) providing an environment conducive to settling a critical question of how to prioritize the natural gas consumption as fuels of power... 

    Stabilisation of multi-loop amplifiers using circuit-based two-port models stability analysis

    , Article IET Circuits, Devices and Systems ; Volume 15, Issue 6 , 2021 , Pages 553-559 ; 1751858X (ISSN) Pasdar, A ; Meghdadi, M ; Medi, A ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    This article applies a systematic approach based on the normalized determinant function (NDF) theory to analyse stability in multi-loop circuits and to design the required stabilization network. Presenting several provisions, the return ratios are extracted by employing immittance or hybrid matrices (Z, Y, G or H) of active two ports. Using these matrices, instead of the S-parameters, facilitates the selection of an appropriate stabilizer network. As a practical case, a non-uniform distributed amplifier (NDA) is designed and inspected for potential instabilities. The presented procedure detects instability associated with one of the NDA circuit's loops, and an appropriate stabilization... 

    A Bi-Level framework for expansion planning in active power distribution networks

    , Article IEEE Transactions on Power Systems ; 2021 ; 08858950 (ISSN) Kabirifar, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Pourghaderi, N ; Dehghanian, P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This paper presents a new framework for multistage expansion planning in active power distribution networks, in which the distribution system operator (DSO) considers active network management by clearing the local energy market at the distribution level. The proposed model is formulated as a bi-level optimization problem, where the upper level minimizes the net present value of the total costs imposed to DSO associated with the investment and maintenance of the network assets as well as the network operation, while the lower level on clearing the local energy market captures the participation of distributed energy resource (DER) owners and demand aggregators to maximize the social welfare.... 

    Evaluating the optimal digestion method and value distribution of precious metals from different waste printed circuit boards

    , Article Journal of Material Cycles and Waste Management ; Volume 22, Issue 5 , 2020 , Pages 1690-1698 Arshadi, M ; Yaghmaei, S ; Esmaeili, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Knowing the metal content of electronic waste is essential to evaluate metal recovery. Lack of a standard method for digestion of precious metals from electronic waste has resulted in difficulty in comparison to the efficiency of recovery. In this study, different precious metal digestion methods and economic value of precious metals from different types of waste printed circuit boards in different fraction sizes, including computer printed circuit boards, mobile phone printed circuit boards, television printed circuit boards, fax machine printed circuit boards, copy machine printed circuit boards, and central processing unit were examined. The optimal digestion method using aqua regia,... 

    Harmonic effects optimization at a system level using a harmonic power flow controller

    , Article Turkish Journal of Electrical Engineering and Computer Sciences ; Volume 28, Issue 5 , 2020 , Pages 2586-2601 Mehri, R ; Mokhtari, H ; Sharif University of Technology
    Turkiye Klinikleri  2020
    Abstract
    Increase of nonlinear loads in industries has resulted in high levels of harmonic currents and consequently harmonic voltages in power networks. Harmonics have several negative effects such as higher energy losses and equipment life reduction. To reduce the levels of harmonics in power networks, different methods of harmonic suppression have been employed. The basic idea in all of these methods is to prevent harmonics from flowing into a power network at customer sides and the point of common coupling (PCC). Due to the costs, none of the existing mitigating methods result in a harmonic-free power system. The remaining harmonic currents, which rotate in a power network according to the system... 

    Electrical power system resilience assessment: a comprehensive approach

    , Article IEEE Systems Journal ; Volume 14, Issue 2 , 2020 , Pages 2643-2652 Sabouhi, H ; Doroudi, A ; Fotuhi Firuzabad, M ; Bashiri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Extreme weather events such as earthquake and hurricane have disastrous consequences on power systems. Due to the inherent nature of these events, as high-impact low-probability (HILP) events, selection of an appropriate method that can provide the effects of weather conditions on the power system behavior still remains a significant challenge. Resilience is a new concept that focuses on mitigating the destructive effects of such disastrous events on power systems. This article provides a fundamental framework for quantifying and modeling of power systems resilience, with focus on high wind incidence. The algorithm composes of four steps. In the first step, the prerequisites of the analysis... 

    Toward operational resilience of smart energy networks in complex infrastructures

    , Article Advances in Intelligent Systems and Computing ; Volume 1123 , 2020 , Pages 203-228 Taheri, B ; Jalilian, A ; Safdarian, A ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Smart energy systems can mitigate electric interruption costs provoked by manifold disruptive events via making efforts toward proper pre-disturbance preparation and optimal post-disturbance restoration. In this context, effective contingency management in power distribution networks calls for contemplating disparate parameters from interconnected electric and transportation systems. This chapter, while considering transportation issues in power networks’ field operations, presents a navigation system for pre-positioning resources such as field crews and reconfiguring the network to acquire a more robust configuration in advance of the imminent catastrophe. Also, after the occurrence of the... 

    Analysis and reliability evaluation of a high step-up soft switching push-pull DC-DC converter

    , Article IEEE Transactions on Reliability ; Volume 69, Issue 4 , 2020 , Pages 1376-1386 Tarzamni, H ; Babaei, E ; Panahandeh Esmaeelnia, F ; Dehghanian, P ; Tohidi, S ; Bannae Sharifian, M. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this article, a new soft switching isolated push-pull dc-dc converter using a three-winding transformer is proposed. The proposed hybrid resonant and pulse width modulated converter employs a conventional push-pull structure in the primary side, a voltage doubler in the secondary side, and a bidirectional switch besides the transformer, altogether help offering a high efficiency over a wide range of input and output voltage signals with an unsophisticated fixed-frequency control mechanism. The primary-side switches are commutated under zero voltage switching with low switching current and the secondary-side diodes are commutated under zero current switching. In this article, we first... 

    Intelligent topology-oriented LS scheme in power systems integrated with high wind power penetration

    , Article IET Generation, Transmission and Distribution ; Volume 14, Issue 9 , 2020 , Pages 1684-1693 Zare, F ; Ranjbar, A ; Faghihi, F ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    Load shedding (LS) is one of the most important protection schemes to prevent system blackout. In the case of largedisturbances, optimal LS in appropriate buses can effectively maintain the system stability. The higher complexity and lowerpredictability of modern power systems with high wind power penetration make it difficult to rely on conventional LS schemes,which shed a fixed, predetermined amount of load regardless of disturbance location. This study presents an intelligent LSscheme based on synchrophasor measurements that are adapted to both disturbance size and power system inertia. Theproposed scheme utilises improved power flow tracing method to determine the amount and location of... 

    Optimal Placement of Automatic Switching Equipment in Radial Distribution Networks Based on Protective Coordination

    , Article Journal of Electrical Engineering and Technology ; Volume 14, Issue 3 , 2019 , Pages 1127-1137 ; 19750102 (ISSN) Amohadi, M ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Korean Institute of Electrical Engineers  2019
    Abstract
    Automatic switching equipment and protection devices (AS/PDs) play a fundamental role in radial power distribution networks. In this paper, a new hybrid method is presented to determine the optimal number, types, and locations of AS/PDs based on protective coordination. When a short circuit fault occurs in a medium voltage distribution network (MV feeder), AS/PDs such as relays, fuses, auto-reclosers and sectionalizers can be employed to disconnect the faulty part from the healthy area. The use of automatic switches at proper locations can significantly decrease system interruptions. The costs of investment, maintenance, and unsupplied energy are considered in the cost function. This... 

    Intelligent topology-oriented load shedding scheme in power systems

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 652-656 ; 9781728115085 (ISBN) Zare, F ; Ranjbar, A ; Faghihi, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Load shedding is a prevalent emergency control designed to prevent system blackouts. The higher complexity and lower predictability of modern power systems makes it difficult to rely on conventional load shedding schemes which shed loads in pre-defined steps without sufficient consideration of the actual system characteristics and the disturbance situations. In case of large disturbances, the power system stability can be improved by optimal load shedding in more effective load buses. Proposed scheme utilizes improved Power Flow Tracing method to determine the amount and location of load drops considering power system constraints. Numerical simulations conducted on IEEE 39 bus standard test... 

    A tunable reflection/transmission coefficient circuit using a 45° hybrid coupler with two orthogonal variables

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 67, Issue 4 , 2019 , Pages 1402-1411 ; 00189480 (ISSN) Kalantari, M ; Meng, X ; Fotowat Ahmady, A ; Yue, C. P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper presents a tunable reflection/transmission coefficient (TRTC) circuit based on a 45° hybrid coupler that is potentially useful for leakage cancelation purposes. The analysis of the proposed TRTC circuit shows that the circuit can cover any reflection/transmission coefficient of less than 0.5 on the Smith chart by adjusting only two variable resistors. Meanwhile, the real and imaginary parts of the reflection/transmission coefficient can be tuned independently, facilitating the use of this circuit in feedback systems. To implement the 45° hybrid coupler used in the proposed TRTC circuit, a new wideband planar topology for arbitrary phase and amplitude hybrid coupler is introduced.... 

    A Matrix-inversion technique for FPGA-based real-time EMT simulation of power converters

    , Article IEEE Transactions on Industrial Electronics ; Volume 66, Issue 2 , 2019 , Pages 1224-1234 ; 02780046 (ISSN) Hadizadeh, A ; Hashemi, M ; Labbaf, M ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper proposes a novel FPGA-based matrix-inversion technique that is specifically tailored and optimized for real-time electromagnetic transients simulation of power electronic converters with high switching frequency. This is the first reported solution that is capable of solving the real-time equations related to using ideal switch model and the associated circuitry in very small time-steps (e.g., an average of 36 ns in a three-phase back-to-back converter case study), without requiring large amount of memory, being limited to small number of switches, adding parasitic elements, or depending on a priori knowledge of the circuit operation or switching strategy. The accuracy of the... 

    Consistent Predictive Simulation of SRAM-Cell Performance Degradation Including Both MOSFET Fabrication Variation and Aging

    , Article 2nd IEEE Electron Devices Technology and Manufacturing Conference, EDTM 2018, 13 March 2018 through 16 March 2018 ; 2018 , Pages 31-33 ; 9781538637111 (ISBN) Gau, H ; Rohbani, N ; Maiti, T. K ; Navarro, D ; Miura-Mattausch, M ; Mattausch, H. J ; Takatsuka, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    We have developed a methodology to simulate circuit aging including the device fabrication variation with less simulation effort. As an example a 6T SRAM cell has been investigated. It is demonstrated that the variability range of the circuit performance is further enhanced due to the long-term device aging. Among the device parameters, the impurity concentration variation plays a particularly important role for the circuit performance variation. However, most sensitive for the aging degradation is the channel-length variation, because it increases the aging effect drastically. Further, the individual aging of each MOSFET is strongly dependent on the actual stress during circuit operation. ©... 

    Design-oriented modelling of axial-flux variable-reluctance resolver based on magnetic equivalent circuits and Schwarz-Christoffel mapping

    , Article IEEE Transactions on Industrial Electronics ; Volume 65, Issue 5 , May , 2018 , Pages 4322-4330 ; 02780046 (ISSN) Saneie, H ; Nasiri Gheidari, Z ; Tootoonchian, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Axial flux variable reluctance (AFVR) resolvers have substantial benefits that make them suitable for motion control drives. However, they suffer from insufficient accuracy, especially in high-accuracy applications. Hence, optimizing the AFVR resolver structure is necessary for improving its commercial usage. However, its accurate modelling needs three-dimensional (3-D) time stepping finite element analysis (TSFEA) that is computationally expensive and unsuitable for co-usage with optimization algorithms. The aim of this paper is to establish an accurate, yet computationally fast, model suitable for optimal design of AFVR resolvers. The working of the proposed model is based on magnetic... 

    Short-circuit analysis in three-phase quasi-Z-source inverter

    , Article 17th IEEE International Conference on Environment and Electrical Engineering and 2017 1st IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2017, 6 June 2017 through 9 June 2017 ; 2017 ; 9781538639160 (ISBN) Yaghoubi, M ; Moghani, J. S ; Noroozi, N ; Zolghadri, M. R ; IEEE EMC Society; IEEE Industry Applications Society (IAS); IEEE Power and Energy Society (PES) ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, the short-circuit fault in three-phase quasi-Z-source inverter (q-ZSI) is analyzed and a linear model is proposed for the short-circuit analysis. The proposed model is based on the state space equations of the system. By using this model, the most critical situation during short-circuit fault is recognized; the maximum reaction time for the protection system could be estimated and elements that are prone to failure are identified as well. The analysis is categorized into two groups, leg fault and switch fault. The linear model is confirmed by simulation of 1kw three-phase q-ZSI. © 2017 IEEE  

    HB2DS: a behavior-driven high-bandwidth network mining system

    , Article Journal of Systems and Software ; Volume 127 , 2017 , Pages 266-277 ; 01641212 (ISSN) Noferesti, M ; Jalili, R ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    This paper proposes a behavior detection system, HB2DS, to address the behavior-detection challenges in high-bandwidth networks. In HB2DS, a summarization of network traffic is represented through some meta-events. The relationships amongst meta-events are used to mine end-user behaviors. HB2DS satisfies the main constraints exist in analyzing of high-bandwidth networks, namely online learning and outlier handling, as well as one-pass processing, delay, and memory limitations. Our evaluation indicates significant improvement in big data stream analyzing in terms of accuracy and efficiency. © 2016 Elsevier Inc