Loading...
Search for: electric-power-system-control
0.014 seconds
Total 34 records

    Harmonic effects optimization at a system level using a harmonic power flow controller

    , Article Turkish Journal of Electrical Engineering and Computer Sciences ; Volume 28, Issue 5 , 2020 , Pages 2586-2601 Mehri, R ; Mokhtari, H ; Sharif University of Technology
    Turkiye Klinikleri  2020
    Abstract
    Increase of nonlinear loads in industries has resulted in high levels of harmonic currents and consequently harmonic voltages in power networks. Harmonics have several negative effects such as higher energy losses and equipment life reduction. To reduce the levels of harmonics in power networks, different methods of harmonic suppression have been employed. The basic idea in all of these methods is to prevent harmonics from flowing into a power network at customer sides and the point of common coupling (PCC). Due to the costs, none of the existing mitigating methods result in a harmonic-free power system. The remaining harmonic currents, which rotate in a power network according to the system... 

    Stand alone performance of permanent magnet synchronous wind power generator with current source matrix converter

    , Article Electric Power Components and Systems ; Volume 43, Issue 8-10 , 2015 , Pages 1018-1027 ; 15325008 (ISSN) Hojabri, H ; Mokhtari, H ; Chang, L ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    A matrix converter is a voltage/current source AC/AC frequency converter. In grid-connected operation of a variable-speed permanent magnet synchronous wind power generator, the matrix converter is normally controlled as a voltage source converter. In this control method, the generator-side voltage is synthesized from the grid-side voltage source. However, in the stand-alone mode of operation, the grid-side stiff voltage source is not available, and the input filter of the matrix converter is unstable. In this article, a new control method is presented that controls a permanent magnet synchronous wind generator in a stand-alone mode with a matrix converter as a current source converter. The... 

    An agent-based model for optimal voltage control and power quality by electrical vehicles in smart grids

    , Article 15th International Conference on Distributed Computing and Artificial Intelligence, DCAI 2018, 20 June 2018 through 22 June 2018 ; Volume 801 , 2019 , Pages 388-394 ; 21945357 (ISSN); 9783319996073 (ISBN) Hadizade, A ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The electric power industry is the main part of Science development, and today, with the advent of technology, the demand for electric power has been expanded. On the other hand, smart grids are developing heavily. One of the notable features of these networks is the presence of a plug-in hybrid electric vehicle (PHEV). The addition of these cars to the network has its own advantages and disadvantages. One of the most important issues in smart grids is network management and control of critical system parameters. In this paper the effect of these cars on the grid is investigated. These vehicles impose an increase in production capacity in the uncontrolled charge mode. They also have the... 

    An agent-based model for optimal voltage control and power quality by electrical vehicles in smart grids

    , Article 15th International Conference on Distributed Computing and Artificial Intelligence, DCAI 2018, 20 June 2018 through 22 June 2018 ; Volume 801 , 2019 , Pages 388-394 ; 21945357 (ISSN); 9783319996073 (ISBN) Hadizade, A ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The electric power industry is the main part of Science development, and today, with the advent of technology, the demand for electric power has been expanded. On the other hand, smart grids are developing heavily. One of the notable features of these networks is the presence of a plug-in hybrid electric vehicle (PHEV). The addition of these cars to the network has its own advantages and disadvantages. One of the most important issues in smart grids is network management and control of critical system parameters. In this paper the effect of these cars on the grid is investigated. These vehicles impose an increase in production capacity in the uncontrolled charge mode. They also have the... 

    Toward operational resilience of smart energy networks in complex infrastructures

    , Article Advances in Intelligent Systems and Computing ; Volume 1123 , 2020 , Pages 203-228 Taheri, B ; Jalilian, A ; Safdarian, A ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Smart energy systems can mitigate electric interruption costs provoked by manifold disruptive events via making efforts toward proper pre-disturbance preparation and optimal post-disturbance restoration. In this context, effective contingency management in power distribution networks calls for contemplating disparate parameters from interconnected electric and transportation systems. This chapter, while considering transportation issues in power networks’ field operations, presents a navigation system for pre-positioning resources such as field crews and reconfiguring the network to acquire a more robust configuration in advance of the imminent catastrophe. Also, after the occurrence of the... 

    A rule-based advanced static var compensator control scheme for transient stability improvement

    , Article Scientia Iranica ; Volume 13, Issue 4 , 2006 , Pages 327-336 ; 10263098 (ISSN) Abazari, S ; Ehsan, M ; Zolghadri, M. R ; Mahdavi, J ; Sharif University of Technology
    Sharif University of Technology  2006
    Abstract
    The paper presents the application of a rule- based control scheme for an Advanced Static Var Compensator (ASVC) to improve power system transient stability. The proposed method uses a current reference, based on the Transient Energy Function (TEF) approach. The proposed scheme provides, also, a continuous control of the reactive power flow. The performance of the proposed approach is compared with that of a system using a conventional control method and of a system without ASVC. A single-machine system and an IEEE three machine system are used to verify the performance of the proposed method. © Sharif University of Technology  

    Load frequency control (LFC) strategies in renewable energy‐based hybrid power systems: a review

    , Article Energies ; Volume 15, Issue 10 , 2022 ; 19961073 (ISSN) Gulzar, M. M ; Iqbal, M ; Shahzad, S ; Muqeet, H. A ; Shahzad, M ; Hussain, M. M ; Sharif University of Technology
    MDPI  2022
    Abstract
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a... 

    Coordinated control of doubley fed induction generator virtual inertia and power system oscillation damping using fuzzy logic

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 32, Issue 4 , 2019 , Pages 536-547 ; 17281431 (ISSN) Solat, A. R ; Ranjbar, A. M ; Mozafari, B ; Sharif University of Technology
    Materials and Energy Research Center  2019
    Abstract
    Doubly-fed induction generator (DFIG) based wind turbines with traditional maximum power point tracking (MPPT) control provide no inertia response under system frequency events. Recently, the DFIG wind turbines have been equipped with virtual inertia controller (VIC) for supporting power system frequency stability. However, the conventional VICs with fixed gain have negative effects on inter-area oscillations of regional networks. To cope with this drawback, this paper proposes a novel adaptive VIC to improve both the inter-area oscillations and frequency stability. In the proposed scheme, the gain of VIC is dynamically adjusted using fuzzy logic. The effectiveness and control performance of... 

    A comparative study on fuzzy damping controller for DFIG wind farms to improve power system oscillations

    , Article Journal of Intelligent and Fuzzy Systems ; Volume 37, Issue 4 , 2019 , Pages 4965-4978 ; 10641246 (ISSN) Solat, A ; Ranjbar, A. M ; Mozafari, B ; Sharif University of Technology
    IOS Press  2019
    Abstract
    Doubly-fed induction generator (DFIG) is the most commonly used technology for wind power generation due to the variable speed performance, decoupled control of active and reactive powers, and high efficiency. However, the DFIG originally cannot participate in damping of power system oscillations since it is not synchronously connected to the power system. This paper proposes an optimal and robust additional damping controller for the DFIG wind turbine to contribute it to damp power system oscillations. It is a fuzzy logic controller that its parameters are optimally tuned using the genetic algorithm (GA). The proposed controller modifies the DFIG active power output by using feedback from... 

    Modified virtual inertial controller for prudential participation of DFIG-based wind turbines in power system frequency regulation

    , Article IET Renewable Power Generation ; Volume 13, Issue 1 , 2019 , Pages 155-164 ; 17521416 (ISSN) Ravanji, M. H ; Parniani, M ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    This study proposes a modified virtual inertial control (MVIC) scheme for doubly-fed induction generator (DFIG)based wind turbines (WTs), which both improves the frequency response of these renewable resources and enhances the power system oscillation damping capabilities. It is shown that the proposed control structure enables the WT to participate prudentially in system frequency regulation, which means the amount of WT kinetic energy released to the grid and its participation in system frequency support is alleviated as its stored energy decreases. The proposed control strategy is introduced conceptually, and its performance is verified analytically. Effects of wind speed variations on... 

    Incorporating Customer Reliability Cost in PEV Charge Scheduling Schemes Considering Vehicle-to-Home Capability

    , Article IEEE Transactions on Vehicular Technology ; Volume 64, Issue 7 , 2015 , Pages 2783-2791 ; 00189545 (ISSN) Alahyari, A ; Fotuhi Firuzabad, M ; Rastegar, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    As the number of plug-in electric vehicles (PEVs) increases, so might their issues and impacts on the power system performance. Toward eliminating the negative impacts of PEVs on the power system, installation of a charging controller at customers' homes, which addresses such issues and brings convenience for customers, is fundamentally required in the smart grid era. This paper develops a novel in-home PEV charge/discharge scheduling method that employs vehicle-to-home (V2H) capability to schedule level of charging/discharging at each time slot. In doing so, a household controller minimizes customer payment cost and reliability cost. The proposed charging algorithm not only responds to... 

    Power and voltage control in a grid-connected microgrid system with a back-to-back converter

    , Article 6th Annual International Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2015, 3 February 2015 through 4 February 2015 ; 2015 , Pages 468-473 ; 9781479976539 (ISBN) Sekhavatmanesh, H ; Mokhtari, H ; Hamzeh, M ; Asbafkan, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This paper proposes to use a back-to-back converter as the interlink between a utility grid and a microgrid. To justify this proposal, two modes of operation are explained and the benefits of the back-to-back converter over conventional static switches are shown. In mode-1, the inter-link converter injects prespecified amounts of active and reactive power to the microgrid. This mode is identified as PQ control mode. Mode-2 is the voltage control mode in which, the back to back converter controls the voltage of the microgrid and maintains the power quality of the current drawn from the utility grid in spite of nonlinear and unbalanced loads in the microgrid  

    Evaluation of demand side behaviors in cost-emission based PM scheduling under restructured environment

    , Article 24th Iranian Conference on Electrical Engineering, ICEE 2016, 10 May 2016 through 12 May 2016 ; 2016 , Pages 885-890 ; 9781467387897 (ISBN) Mollahassani Pour, M ; Rashidinejad, E ; Rashidinejad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Security constrained Preventive Maintenance (PM) scheduling is addressed as a crucial issue especially coping with new challenges of smart grids. Under the smart grid environment, Demand Response Resources (DRRs) are considered as virtual power plants in energy policy decisions which affect the controllability of power system ranging from short-term to long-term. Here, DRRs are regarded as a virtual resource of capacity reserve acquisition. Furthermore, under new environment, multifarious objectives will be imposed to PM scheduling which can be replicated into a single objective problem via a weighted approach with consideration of arbitrary weighting coefficients. In this paper, a new... 

    Voltage regulation in private environments: opportunity or threat

    , Article IEEE Transactions on Power Delivery ; 2017 ; 08858977 (ISSN) Gharebaghi, S ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Historically, the general target of affecting demand via voltage regulation was conservation, i.e., reducing peak demand and/or accumulated energy. In private environments however, profit maximization may take place of conservation, regardless of the social welfare and consumers' costs. This letter aims at highlighting the effectiveness of voltage regulation as a measure to maximize utilities' profit. The new strategy can indeliberately cause more payments for customers. The letter simulates different cases which reveal importance of the role regulatory bodies have to play to prevent unethical actions in private environments. IEEE  

    Photovoltaic parameter estimation using heuristic optimization

    , Article 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation ; Volume 2018-January , 2018 , Pages 0792-0797 ; 9781538626405 (ISBN) Mirzapour, O ; Karimi Arpanahi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Photovoltaic (PV) panel accurate modeling is essential for operational studies and generation estimation under actual conditions and power electronic control device designs in grid connected or isolated power systems. Inaccuracy in modeling parameters such as photon's current, diode's saturation current, series and parallel resistances and diodes ideality coefficients causes errors in modeling and simulating photovoltaic panel's operation. In this paper, photovoltaic panel's parameters are estimated according to characteristic curves obtained from experiments. Heuristic optimization methods are utilized to calculate parameters for both singlediode and double-diode models. Results indicate... 

    Optimal cost of voltage security control using voltage dependent load models in presence of demand response

    , Article IEEE Transactions on Smart Grid ; Volume: 10 , Issue: 3 , May , 2018 , Pages: 2383 - 2395 ; 19493053 (ISSN) Rabiee, A ; Mohseni Bonab, S. M ; Parniani, M ; Kamwa, I ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    This paper proposes a new framework for corrective voltage control (CVC) of power systems. It ensures a desired loading margin (LM) after encountering severe contingencies while minimizing the corresponding control costs. The framework is divided into primary corrective voltage control (PCVC) and secondary CVC (SCVC) stages for restoration of voltage stability and ensuring a desired LM. These stages are based on the sequence and quickness of the control actions required in post-contingency state of the system. The PCVC sub problem deals with the condition faced by a power system subject to voltage instability as the result of severe contingencies. Such control is merely devised to restore... 

    Decentralized droop control in DC microgrids based on a frequency injection approach

    , Article IEEE Transactions on Smart Grid ; Volume 10, Issue 6 , 2019 , Pages 6782-6791 ; 19493053 (ISSN) Peyghami, S ; Davari, P ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Power sharing control among grid forming dc sources employing a conventional voltage droop approach meets inaccurate load sharing and unacceptable voltage regulation performance. Thereby, communication-based secondary and supervisory controllers have been presented to overcome the aforementioned issues. Furthermore, with the aim of eliminating communication system, frequency-based droop approaches have been introduced for low-voltage dc grids where the frequency of the superimposed ac signal onto the dc voltage is proportional to the output power. However, in reality, dc grid structures can be applied to medium and high voltage applications with different X/R ratios. This paper generalizes... 

    Reinforcing fault ride through capability of grid forming voltage source converters using an enhanced voltage control scheme

    , Article IEEE Transactions on Power Delivery ; Volume 34, Issue 5 , 2019 , Pages 1827-1842 ; 08858977 (ISSN) Zarei, S. F ; Mokhtari, H ; Ghasemi, M. A ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Medium power distributed energy resources (DERs) are commonly connected to medium voltage distribution systems via voltage source converters (VSCs). Several guidelines and standards have been developed to establish the needed criteria and requirements for DERs interconnections. In this respect, it is preferred to reinforce the VSC fault ride through (FRT) capability, which considerably minimizes the DG outage period and reconnection time and results in a resilient system against short circuits. Considering the significant number of asymmetrical faults in distribution systems, the VSC response in such conditions must be investigated, and consequently, its FRT capability must be reinforced. In... 

    Optimal cost of voltage security control using voltage dependent load models in presence of demand response

    , Article IEEE Transactions on Smart Grid ; Volume 10, Issue 3 , 2019 , Pages 2383-2395 ; 19493053 (ISSN) Rabiee, A ; Mohseni Bonab, S. M ; Parniani, M ; Kamwa, I ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper proposes a new framework for corrective voltage control (CVC) of power systems. It ensures a desired loading margin (LM) after encountering severe contingencies while minimizing the corresponding control costs. The framework is divided into primary CVC (PCVC) and secondary CVC (SCVC) stages for restoration of voltage stability and ensuring a desired LM. These stages are based on the sequence and quickness of the control actions required in post-contingency state of the system. The PCVC sub problem deals with the condition faced by a power system subject to voltage instability as the result of severe contingencies. Such control is merely devised to restore system stability. Next,... 

    Optimal placement of protective and controlling devices in electric power distribution systems: a MIP model

    , Article IEEE Access ; Volume 7 , 2019 , Pages 122827-122837 ; 21693536 (ISSN) Izadi, M ; Safdarian, A ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper presents a mathematical model for simultaneous deployment of protective devices (PDs) and controlling devices (CDs) in distribution networks. The PDs include fuses and reclosers and the CDs are remote controlled switches (RCSs) and manual switches (MSs). The model is to minimize equipment costs as well as sustained and momentary interruption costs. It considers the coordination of fuses and reclosers during temporary faults involving fuse saving and fuse blowing schemes. The model is in mixed integer programming (MIP) fashion which can be effectively solved with available solvers. The performance of the proposed model is verified through applying it to Bus 4 of Roy Billinton test...