Loading...
Search for: electric-power-system-control
0.012 seconds
Total 34 records

    Welfare-aware strategic demand control in an intelligent market-based framework: Move towards sustainable smart grid

    , Article Applied Energy ; Volume 251 , 2019 ; 03062619 (ISSN) Taheri Tehrani, M ; Afshin Hemmatyar, A. M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    To address sustainability challenges appeared in today's power grids, it is essential for emerging demand control paradigm to be adapted more to the lifestyle of the customers. In this paper, due to the ever-growing interconnectivity of the grids, a distributed Commodity Market (CM) framework is proposed in which intelligent agents embedded inside of customers want to maximize their preferred welfare through real-time demand of power from an energy market. Since there is not a comprehensive model for the grids, utilizing Reinforcement Learning (RL) proves that the global optimal performance is achieved in the Nash Equilibrium (NE) of the proposed framework. This solution not only maximizes... 

    Voltage regulation in private environments: opportunity or threat

    , Article IEEE Transactions on Power Delivery ; 2017 ; 08858977 (ISSN) Gharebaghi, S ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Historically, the general target of affecting demand via voltage regulation was conservation, i.e., reducing peak demand and/or accumulated energy. In private environments however, profit maximization may take place of conservation, regardless of the social welfare and consumers' costs. This letter aims at highlighting the effectiveness of voltage regulation as a measure to maximize utilities' profit. The new strategy can indeliberately cause more payments for customers. The letter simulates different cases which reveal importance of the role regulatory bodies have to play to prevent unethical actions in private environments. IEEE  

    Toward operational resilience of smart energy networks in complex infrastructures

    , Article Advances in Intelligent Systems and Computing ; Volume 1123 , 2020 , Pages 203-228 Taheri, B ; Jalilian, A ; Safdarian, A ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Smart energy systems can mitigate electric interruption costs provoked by manifold disruptive events via making efforts toward proper pre-disturbance preparation and optimal post-disturbance restoration. In this context, effective contingency management in power distribution networks calls for contemplating disparate parameters from interconnected electric and transportation systems. This chapter, while considering transportation issues in power networks’ field operations, presents a navigation system for pre-positioning resources such as field crews and reconfiguring the network to acquire a more robust configuration in advance of the imminent catastrophe. Also, after the occurrence of the... 

    Stand alone performance of permanent magnet synchronous wind power generator with current source matrix converter

    , Article Electric Power Components and Systems ; Volume 43, Issue 8-10 , 2015 , Pages 1018-1027 ; 15325008 (ISSN) Hojabri, H ; Mokhtari, H ; Chang, L ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    A matrix converter is a voltage/current source AC/AC frequency converter. In grid-connected operation of a variable-speed permanent magnet synchronous wind power generator, the matrix converter is normally controlled as a voltage source converter. In this control method, the generator-side voltage is synthesized from the grid-side voltage source. However, in the stand-alone mode of operation, the grid-side stiff voltage source is not available, and the input filter of the matrix converter is unstable. In this article, a new control method is presented that controls a permanent magnet synchronous wind generator in a stand-alone mode with a matrix converter as a current source converter. The... 

    Sliding mode robust control of the horizontal wind turbines with model uncertainties

    , Article 2020 9th International Conference on Modern Circuits and Systems Technologies, MOCAST 2020, 7 September 2020 through 9 September ; 2020 Faraji Nayeh, R ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Wind turbines are generally controlled based on two control objectives: Turbine protection and the generation of acceptable power for the grid. In this paper, a robust control strategy is presented for switching between various operating modes of the turbine. The rotor angular speed is hold below the allowable speed in all operation time. It is also attempted to catch a constant power in a desirable amount during the most of operation time. For the elimination of model/environmental uncertainties, sliding mode controllers are used. For the objective of power tracking, the stability of sliding mode controller is proved for a set of sliding surfaces. Advantages and disadvantages of the... 

    Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers

    , Article Energy ; Volume 90 , October , 2015 , Pages 1508-1521 ; 03605442 (ISSN) Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    To achieve a cost-effective and reliable use of wind power generation, advanced control techniques are required. In this paper, the application of two control strategies for the improvement of wind turbine power output is investigated in the presence of model/environmental uncertainties. Rotational speed of the wind turbine and consequently its power output are controlled via manipulation of blades pitch angle (at a constant generator torque). First, the classical PID controller is designed based on root locus analysis while in the second scheme, an H∞-robust controller is designed via μ-synthesis based on DKiteration algorithm. Performance of the two controllers in tracking of the desired... 

    Reinforcing fault ride through capability of grid forming voltage source converters using an enhanced voltage control scheme

    , Article IEEE Transactions on Power Delivery ; Volume 34, Issue 5 , 2019 , Pages 1827-1842 ; 08858977 (ISSN) Zarei, S. F ; Mokhtari, H ; Ghasemi, M. A ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Medium power distributed energy resources (DERs) are commonly connected to medium voltage distribution systems via voltage source converters (VSCs). Several guidelines and standards have been developed to establish the needed criteria and requirements for DERs interconnections. In this respect, it is preferred to reinforce the VSC fault ride through (FRT) capability, which considerably minimizes the DG outage period and reconnection time and results in a resilient system against short circuits. Considering the significant number of asymmetrical faults in distribution systems, the VSC response in such conditions must be investigated, and consequently, its FRT capability must be reinforced. In... 

    Power and voltage control in a grid-connected microgrid system with a back-to-back converter

    , Article 6th Annual International Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2015, 3 February 2015 through 4 February 2015 ; 2015 , Pages 468-473 ; 9781479976539 (ISBN) Sekhavatmanesh, H ; Mokhtari, H ; Hamzeh, M ; Asbafkan, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This paper proposes to use a back-to-back converter as the interlink between a utility grid and a microgrid. To justify this proposal, two modes of operation are explained and the benefits of the back-to-back converter over conventional static switches are shown. In mode-1, the inter-link converter injects prespecified amounts of active and reactive power to the microgrid. This mode is identified as PQ control mode. Mode-2 is the voltage control mode in which, the back to back converter controls the voltage of the microgrid and maintains the power quality of the current drawn from the utility grid in spite of nonlinear and unbalanced loads in the microgrid  

    Photovoltaic parameter estimation using heuristic optimization

    , Article 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation ; Volume 2018-January , 2018 , Pages 0792-0797 ; 9781538626405 (ISBN) Mirzapour, O ; Karimi Arpanahi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Photovoltaic (PV) panel accurate modeling is essential for operational studies and generation estimation under actual conditions and power electronic control device designs in grid connected or isolated power systems. Inaccuracy in modeling parameters such as photon's current, diode's saturation current, series and parallel resistances and diodes ideality coefficients causes errors in modeling and simulating photovoltaic panel's operation. In this paper, photovoltaic panel's parameters are estimated according to characteristic curves obtained from experiments. Heuristic optimization methods are utilized to calculate parameters for both singlediode and double-diode models. Results indicate... 

    Optimal placement of protective and controlling devices in electric power distribution systems: A MIP Model

    , Article IEEE Access ; Volume 7 , 2019 , Pages 122827-122837 ; 21693536 (ISSN) Izadi, M ; Safdarian, A ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper presents a mathematical model for simultaneous deployment of protective devices (PDs) and controlling devices (CDs) in distribution networks. The PDs include fuses and reclosers and the CDs are remote controlled switches (RCSs) and manual switches (MSs). The model is to minimize equipment costs as well as sustained and momentary interruption costs. It considers the coordination of fuses and reclosers during temporary faults involving fuse saving and fuse blowing schemes. The model is in mixed integer programming (MIP) fashion which can be effectively solved with available solvers. The performance of the proposed model is verified through applying it to Bus 4 of Roy Billinton test... 

    Optimal placement of protective and controlling devices in electric power distribution systems: a MIP model

    , Article IEEE Access ; Volume 7 , 2019 , Pages 122827-122837 ; 21693536 (ISSN) Izadi, M ; Safdarian, A ; Moeini Aghtaie, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper presents a mathematical model for simultaneous deployment of protective devices (PDs) and controlling devices (CDs) in distribution networks. The PDs include fuses and reclosers and the CDs are remote controlled switches (RCSs) and manual switches (MSs). The model is to minimize equipment costs as well as sustained and momentary interruption costs. It considers the coordination of fuses and reclosers during temporary faults involving fuse saving and fuse blowing schemes. The model is in mixed integer programming (MIP) fashion which can be effectively solved with available solvers. The performance of the proposed model is verified through applying it to Bus 4 of Roy Billinton test... 

    Optimal cost of voltage security control using voltage dependent load models in presence of demand response

    , Article IEEE Transactions on Smart Grid ; Volume: 10 , Issue: 3 , May , 2018 , Pages: 2383 - 2395 ; 19493053 (ISSN) Rabiee, A ; Mohseni Bonab, S. M ; Parniani, M ; Kamwa, I ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    This paper proposes a new framework for corrective voltage control (CVC) of power systems. It ensures a desired loading margin (LM) after encountering severe contingencies while minimizing the corresponding control costs. The framework is divided into primary corrective voltage control (PCVC) and secondary CVC (SCVC) stages for restoration of voltage stability and ensuring a desired LM. These stages are based on the sequence and quickness of the control actions required in post-contingency state of the system. The PCVC sub problem deals with the condition faced by a power system subject to voltage instability as the result of severe contingencies. Such control is merely devised to restore... 

    Optimal cost of voltage security control using voltage dependent load models in presence of demand response

    , Article IEEE Transactions on Smart Grid ; Volume 10, Issue 3 , 2019 , Pages 2383-2395 ; 19493053 (ISSN) Rabiee, A ; Mohseni Bonab, S. M ; Parniani, M ; Kamwa, I ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper proposes a new framework for corrective voltage control (CVC) of power systems. It ensures a desired loading margin (LM) after encountering severe contingencies while minimizing the corresponding control costs. The framework is divided into primary CVC (PCVC) and secondary CVC (SCVC) stages for restoration of voltage stability and ensuring a desired LM. These stages are based on the sequence and quickness of the control actions required in post-contingency state of the system. The PCVC sub problem deals with the condition faced by a power system subject to voltage instability as the result of severe contingencies. Such control is merely devised to restore system stability. Next,... 

    Multivariable robust control of a horizontal wind turbine under various operating modes and uncertainties: A comparison on sliding mode and H∞ control

    , Article International Journal of Electrical Power and Energy Systems ; Volume 115 , 2020 Faraji Nayeh, R ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Wind turbines are generally controlled for the objectives of the turbine protection and generation of the acceptable power for the utility grid. In this paper, a nonlinear multivariable model of the wind turbine with a DFIG generator is considered. The rotor speed and the d-axis rotor current, as the controlled variables, are controlled via manipulation of the two generator voltages, as the control signals. Two robust control strategies including the sliding mode control and H∞ robust control, designed via μ-synthesis based on DK-iteration algorithm, are presented for switching between various operating modes. Development of an acceptable dynamic model and two innovative control strategies... 

    Modified virtual inertial controller for prudential participation of DFIG-based wind turbines in power system frequency regulation

    , Article IET Renewable Power Generation ; Volume 13, Issue 1 , 2019 , Pages 155-164 ; 17521416 (ISSN) Ravanji, M. H ; Parniani, M ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    This study proposes a modified virtual inertial control (MVIC) scheme for doubly-fed induction generator (DFIG)based wind turbines (WTs), which both improves the frequency response of these renewable resources and enhances the power system oscillation damping capabilities. It is shown that the proposed control structure enables the WT to participate prudentially in system frequency regulation, which means the amount of WT kinetic energy released to the grid and its participation in system frequency support is alleviated as its stored energy decreases. The proposed control strategy is introduced conceptually, and its performance is verified analytically. Effects of wind speed variations on... 

    Model-free LQR design by Q-function learning

    , Article Automatica ; Volume 137 , 2022 ; 00051098 (ISSN) Farjadnasab, M ; Babazadeh, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Reinforcement learning methods such as Q-learning have shown promising results in the model-free design of linear quadratic regulator (LQR) controllers for linear time-invariant (LTI) systems. However, challenges such as sample-efficiency, sensitivity to hyper-parameters, and compatibility with classical control paradigms limit the integration of such algorithms in critical control applications. This paper aims to take some steps towards bridging the well-known classical control requirements and learning algorithms by using optimization frameworks and properties of conic constraints. Accordingly, a new off-policy model-free approach is proposed for learning the Q-function and designing the... 

    Micro-grid stabilizer design using sliding mode controller

    , Article International Journal of Electrical Power and Energy Systems ; Volume 116 , March , 2020 Mousavi Somarin, H ; Parvari, R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Future of the network stability is endangered by increasing the number of Distributed Generation (DG) and Renewable Energy Source (RES) units. The idea of the Virtual Synchronous Machine (VSM) has been raised to control the power electronic-based DG/RES converters in order to have better integration with the grid. This paper introduces a new stabilizer design for VSM-based converters to guarantee the stability of the micro-grid (MG). In this regard, the Sliding Mode Control (SMC) theory, which is robust against the disturbances and uncertainties, is employed to cope with the intermittent and nonlinear nature of DGs. The mutual operation of the proposed inverter and MG stabilizer has the... 

    Load frequency control (LFC) strategies in renewable energy‐based hybrid power systems: a review

    , Article Energies ; Volume 15, Issue 10 , 2022 ; 19961073 (ISSN) Gulzar, M. M ; Iqbal, M ; Shahzad, S ; Muqeet, H. A ; Shahzad, M ; Hussain, M. M ; Sharif University of Technology
    MDPI  2022
    Abstract
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a... 

    Incorporating Customer Reliability Cost in PEV Charge Scheduling Schemes Considering Vehicle-to-Home Capability

    , Article IEEE Transactions on Vehicular Technology ; Volume 64, Issue 7 , 2015 , Pages 2783-2791 ; 00189545 (ISSN) Alahyari, A ; Fotuhi Firuzabad, M ; Rastegar, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    As the number of plug-in electric vehicles (PEVs) increases, so might their issues and impacts on the power system performance. Toward eliminating the negative impacts of PEVs on the power system, installation of a charging controller at customers' homes, which addresses such issues and brings convenience for customers, is fundamentally required in the smart grid era. This paper develops a novel in-home PEV charge/discharge scheduling method that employs vehicle-to-home (V2H) capability to schedule level of charging/discharging at each time slot. In doing so, a household controller minimizes customer payment cost and reliability cost. The proposed charging algorithm not only responds to... 

    Harmonic effects optimization at a system level using a harmonic power flow controller

    , Article Turkish Journal of Electrical Engineering and Computer Sciences ; Volume 28, Issue 5 , 2020 , Pages 2586-2601 Mehri, R ; Mokhtari, H ; Sharif University of Technology
    Turkiye Klinikleri  2020
    Abstract
    Increase of nonlinear loads in industries has resulted in high levels of harmonic currents and consequently harmonic voltages in power networks. Harmonics have several negative effects such as higher energy losses and equipment life reduction. To reduce the levels of harmonics in power networks, different methods of harmonic suppression have been employed. The basic idea in all of these methods is to prevent harmonics from flowing into a power network at customer sides and the point of common coupling (PCC). Due to the costs, none of the existing mitigating methods result in a harmonic-free power system. The remaining harmonic currents, which rotate in a power network according to the system...