Loading...
Search for: electrochemical-analysis
0.011 seconds
Total 47 records

    Electrochemical determination of atorvastatin on nano-scaled polypyrrole film

    , Article Bioelectrochemistry ; Vol. 98 , 2014 , pp. 1-10 ; ISSN: 15675394 Kamalzadeh, Z ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    Pyrrole was electro-polymerized on the surface of the glassy carbon electrode (GCE) coated with a thin film of carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG) or graphite nanopowder (GNP). Morphology, thickness, stability and loading of the polypyrrole (PPY) film were significantly affected by the structure and morphology of the sub-layer of carbon nanomaterials. Electrochemical oxidation of atorvastatin (ATOR) was investigated. Under the optimized conditions, a significant increase in the peak current (compared to other modified electrodes and bare GCE) and a negative shift in the peak potential (compared to bare GCE) were... 

    Synthesis and electrochemical characterization of sol-gel-derived RuO 2/carbon nanotube composites

    , Article Journal of Solid State Electrochemistry ; Vol. 18, Issue 4 , April , 2014 , pp. 993-1003 ; Online ISSN: 1433-0768 Kahram, M ; Asnavandi, M ; Dolati, A ; Sharif University of Technology
    Abstract
    Ruthenium oxide was coated on multiwalled carbon nanotubes (MWCNTs) to obtain nanocomposite electrode which has a good response to the pH. To synthesize this electrode, gold and cobalt were coated on a stainless steel 304 substrates, respectively, and then, vertically aligned carbon nanotubes were grown on the prepared substrates by chemical vapor deposition. Gold reduced activity of the stainless steel, while cobalt served as a catalyst for growth of the carbon nanotube. Ruthenium oxide was then coated on MWCNTs via sol-gel method. At last, different techniques were used to characterize the properties of synthesized electrode including scanning electron microscopy (SEM), transmission... 

    Pd-Au nanoparticle decorated carbon nanotube as a sensing layer on the surface of glassy carbon electrode for electrochemical determination of ceftazidime

    , Article Materials Science and Engineering C ; Vol. 34, issue. 1 , 2014 , pp. 318-325 ; ISSN: 09284931 Shahrokhian, S ; Salimian, R ; Rastgar, S ; Sharif University of Technology
    Abstract
    A simple electrodeposition method is employed to construct a thin film modifier of palladium-gold nanoparticles (Pd-AuNPs) decorated multi-walled carbon nanotube (MWCNT) on the surface of glassy carbon electrode (GCE). Morphology and property of Pd-AuNPs-MWCNT have been examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Electrochemical performance of Pd-AuNPs-MWCNT/GCE for detection of ceftazidime (CFZ) has been investigated by cyclic voltammetry (CV). This nanostructured film modified electrode effectively exhibited enhanced properties for detection of ceftazidime (CFZ). The effects of various experimental variables such as, the amount of casted MWCNT,... 

    Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: Layer-by-layer electrochemical preparation, characterization and rifampicin sensory application

    , Article Talanta ; Vol. 119 , 2014 , pp. 156-163 ; ISSN: 00399140 Rastgar, S ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of nickel hydroxide nanoparticle-reduced graphene oxide nanosheets (Ni(OH)2-RGO) on a graphene oxide (GO) film pre-cast on a glassy carbon electrode surface. The surface morphology and nature of the nano-hybrid film (Ni(OH)2-RGO) was thoroughly characterized by scanning electron and atomic force microscopy, spectroscopy and electrochemical techniques. The modified electrode appeared as an effective electro-catalytic model for analysis of rifampicin (RIF) by using linear sweep voltammetry (LSV). The prepared modified electrode exhibited a distinctly higher activity... 

    A polypyrrole-based sorptive microextraction coating for preconcentration of malathion from aquatic media

    , Article Chromatographia ; Volume 74, Issue 9-10 , 2011 , Pages 731-735 ; 00095893 (ISSN) Bagheri, H ; Aghakhani, A ; Ayazi, Z ; Khakinezhad, M ; Sharif University of Technology
    Abstract
    A new micro-solid phase extraction method was developed by combining solid-phase extraction and stir bar sorptive extraction to benefit from the advantages of both techniques. A polypyrrole coating was electrochemically synthesized on the surface of an already used graphite furnace, employed in electro-thermal atomic absorption spectroscopy. The cylindrical geometry of the graphite tube provided a rather huge surface area, suitable for sorptive extraction. The novel sorbent coating was examined as an extracting medium to isolate malathion. Effects of different parameters such as extraction time, salt concentration, sample volume, desorption solvent and time were investigated and optimized.... 

    A study on the effects of Fex/Niy/MgO(1-x-y) catalysts on the volumetric and electrochemical hydrogen storage of multi-walled carbon nanotubes

    , Article International Journal of Hydrogen Energy ; Volume 35, Issue 1 , 2010 , Pages 231-237 ; 03603199 (ISSN) Reyhani, A ; Mortazavi, S. Z ; Zaker Moshfegh, A ; Nozad Golikand, A ; Sharif University of Technology
    Abstract
    The effects of various ratios of Fe/Ni/MgO and growth temperatures on yield, diameter and quality of multi-walled carbon nanotubes (MWCNTs) were studied. Thermal gravimetric analysis (TGA) confirmed that the MWCNT yield depends on Fe/Ni ratio with the following order; Fe0.5 Ni0.5 > Fe > Fe0.75 Ni0.25 > Fe0.25 Ni0.75 > Ni. The results indicated that there is an optimum temperature (940 °C) for the MWCNT growth both from quality and quantity (yield) aspects as compared to other temperatures. Moreover, the changes on Fe/Ni to MgO ratio for the MWCNT growth revealed that Fe/Ni/MgO with the ratio of 17.5/17.5/65 had the highest quality and surface area as compared to the other ratios. The... 

    Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 1098-1104 ; 09284931 (ISSN) Asadian, E ; Iraji Zad, A ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable... 

    Fabrication of porous gelatin-chitosan microcarriers and modeling of process parameters via the RSM method

    , Article International Journal of Biological Macromolecules ; Volume 88 , 2016 , Pages 288-295 ; 01418130 (ISSN) Karimian, S. A. M ; Mashayekhan, S ; Baniasadi, H ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    Porous gelatin-chitosan microcarriers (MCs) with the size of 350 ± 50 μm were fabricated with blends of different gelatin/chitosan (G/C) weight ratio using an electrospraying technique. Response surface methodology (RSM) was used to study the quantitative influence of process parameters, including blend ratio, voltage, and syringe pump flow rate, on MCs diameter and density. In the following, MCs of the same diameter and different G/C weight ratio (1, 2, and 3) were fabricated and their porosity and biocompatibility were investigated via SEM images and MTT assay, respectively. The results showed that mesenchymal stem cells (MSCs) could attach, proliferate, and spread on fabricated porous MCs... 

    Synthesis and Study of Electron Transport through a Self-Assembled Monolayer of Thiol-End-Functionalized Tetraphenylporphyrines and Metalo-Tetraphenylporphyrines and Electrochemical Analysis of Dopamine and Ascorbic Acid with this SAMs

    , M.Sc. Thesis Sharif University of Technology Sanaei, Mahsa (Author) ; Mohammadi Boghaei, Davar (Supervisor)
    Abstract
    Self-Assembled Monolayer (SAM) is the first step in all surface engineering and assembly processes. It is used in sensor fabrication, memories and molecular recognition and optoelectronic devises as an active surface for patterning and chemical architecting of solid substrates. Tetraphenyl porphyrins because of their high stability and uniqe electronic and optic properties, that comes from their conjugate π electrons, easily can be used in these monolayers. Moreover they have a wide application because of their ability for coordination with metals and accepting substituents with electron donating and withdrawing properties. Electron transport through these layars which attach to the surface... 

    Optimization of solid-phase microextraction of volatile phenols in water by a polyaniline-coated Pt-fiber using experimental design

    , Article Analytica Chimica Acta ; Volume 581, Issue 1 , 2007 , Pages 71-77 ; 00032670 (ISSN) Mousavi, M ; Noroozian, E ; Jalali Heravi, M ; Mollahosseini, A ; Sharif University of Technology
    2007
    Abstract
    Solid-phase microextraction (SPME) coupled to gas chromatography (GC) was applied to the extraction of phenol and some of its volatile derivatives in water samples. The SPME fiber consisted of a thin layer of polyaniline, which was electrochemically coated on a fine Pt wire. The stability of the coating was such that it could be used at temperatures as high as 325 °C, without any deterioration. The effects of various parameters affecting the extraction efficiency were studied, simultaneously. From these, optimization of the extraction temperature, extraction time, coating thickness, sample pH, salt concentration and desorption time was carried out by means of a (26-2) fractional factorial... 

    Artificial neural network aided estimation of the electrochemical signals of monosaccharides on gold electrode

    , Article Carbohydrate Research ; Volume 343, Issue 8 , 2008 , Pages 1359-1365 ; 00086215 (ISSN) Gobal, F ; Sadeghpour Dilmaghani, A ; Sharif University of Technology
    2008
    Abstract
    Artificial neural networks were used to predict the oxidation peaks potentials of 7 monosaccharides under linear sweep voltammetry regime. Two sets of descriptors, one based on molecular properties calculated through DFT and another based on simple geometric distributions of hydroxyl groups and asymmetric carbon atoms along molecular chains, were employed to introduce the molecules to networks. Relatively, simple networks of (3,3,1) and (3,3,3,1) structures with the number of epochs not exceeding 15 through training process were capable of correctly predicting the peaks positions with R values in the range of 0.97-0.99. © 2008 Elsevier Ltd. All rights reserved  

    Enhanced electrochemical hydrogen storage by catalytic Fe-doped multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition

    , Article Journal of Power Sources ; Volume 188, Issue 2 , 2009 , Pages 404-410 ; 03787753 (ISSN) Reyhani, A ; Mortazavi, S.Z ; Moshfegh, A.Z ; Golikand, A.N ; Amiri, M ; Sharif University of Technology
    2009
    Abstract
    Hydrogen storage capacities of raw, oxidized, purified and Fe-doped multi-walled carbon nanotubes (MWCNTs) were studied by electrochemical method. Based on transmission electron microscopy and Raman spectroscopic data, thermal oxidation removed defective graphite shells at the outer walls of MWCNTs. The analysis results indicated that the acid treatment dissolved most of the catalysts and opened some tips of the MWCNTs. Thermal gravimetric analysis and differential scanning calorimetry results illustrated that by oxidation and purification of MWCNTs, the weight loss peak shifts toward a higher temperature. N2 adsorption isotherms of the purified and oxidized MWCNTs showed an increase in N2... 

    Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles

    , Article Analyst ; Volume 136, Issue 11 , 2011 , Pages 2322-2329 ; 00032654 (ISSN) Mahshid, S ; Li, C ; Mahshid, S. S ; Askari, M ; Dolati, A ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    A simple modified TiO2 nanotubes electrode was fabricated by electrodeposition of Pd, Pt and Au nanoparticles. The TiO2 nanotubes electrode was prepared using the anodizing method, followed by modifying Pd nanoparticles onto the tubes surface, offering a uniform conductive surface for electrodeposition of Pt and Au. The performance of the modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The Au/Pt/Pd/TiO2 NTs modified electrode represented a high sensitivity towards individual detection of dopamine as well as simultaneous detection of dopamine and uric acid using 0.1 M phosphate buffer solution (pH 7.00) as the base solution. In both case,... 

    Aniline-silica nanocomposite as a novel solid phase microextraction fiber coating

    , Article Journal of Chromatography A ; Volume 1238 , May , 2012 , Pages 22-29 ; 00219673 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    2012
    Abstract
    A new unbreakable solid phase microextraction (SPME) fiber coating based on aniline-silica nanocomposite was electrodeposited on a stainless steel wire. The electropolymerization process was carried out at a constant deposition potential, applied to the corresponding aqueous electrolyte containing aniline and silica nanoparticles. The scanning electron microscopy (SEM) images showed the non-smooth and the porous surface structure of the prepared nanocomposite. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some environmentally important polycyclic aromatic hydrocarbons (PAHs), as model compounds, from aqueous samples.... 

    Highly sensitive voltammetric determination of lamotrigine at highly oriented pyrolytic graphite electrode

    , Article Bioelectrochemistry ; Volume 84 , 2012 , Pages 38-43 ; 15675394 (ISSN) Saberi, R. S ; Shahrokhian, S ; Sharif University of Technology
    2012
    Abstract
    The electrochemical behavior of lamotrigine (LMT) at the pyrolytic graphite electrode (PGE) is investigated in detail by the means of cyclic voltammetry. During the electrochemical reduction of LMT, an irreversible cathodic peak appeared. Cyclic voltammetric studies indicated that the reduction process has an irreversible and adsorption-like behavior. The observed reduction peak is attributed to a two-electron process referring to the reduction of azo group. The electrode showed an excellent electrochemical activity toward the electro-reduction of LMT, leading to a significant improvement in sensitivity as compared to the glassy carbon electrode. The results of electrochemical impedance... 

    Electrochemical determination of clozapine on MWCNTs/new coccine doped ppy modified GCE: An experimental design approach

    , Article Bioelectrochemistry ; Volume 90 , 2013 , Pages 36-43 ; 15675394 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Hamzehloei, A ; Sharif University of Technology
    2013
    Abstract
    The electrooxidation of clozapine (CLZ) was studied on the surface of a glassy carbon electrode (GCE) modified with a thin film of multiwalled carbon nanotubes (MWCNTs)/new coccine (NC) doped polypyrrole (PPY) by using linear sweep voltammetry (LSV). The pH of the supporting electrolyte (D), drop size of the cast MWCNTs suspension (E) and accumulation time of CLZ on the surface of modified electrode (F) was considered as effective experimental factors and the oxidation peak current of CLZ was selected as the response. By using factorial-based response-surface methodology, the optimum values of factors were obtained as 5.44, 10 μL and 300 s for D, E and F respectively. Under the optimized... 

    Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir

    , Article Materials Science and Engineering C ; Volume 53 , 2015 , Pages 134-141 ; 09284931 (ISSN) Shahrokhian, S ; Azimzadeh, M ; Amini, M. K ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of... 

    Voltammetric behavior and determination of trace amounts of omeprazole using an edge-plane pyrolytic graphite electrode

    , Article Iranian Journal of Pharmaceutical Research ; Volume 14, Issue 2 , Spring , 2015 , Pages 465-471 ; 17350328 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Bayat, M ; Ghorbani Bidkorbeh, F ; Sharif University of Technology
    Iranian Journal of Pharmaceutical Research  2015
    Abstract
    The voltammetric performance of edge-plane pyrolytic graphite (EPG) electrode via adsorptive stripping voltammetry was investigated for study of the electrochemical behavior of omeprazole (OMZ) in aqueous solution. The results revealed that the oxidation of OMZ is an irreversible pH-dependent process that proceeds with the transfer of one electron and one proton in an adsorption-controlled mechanism. The determination conditions, such as the pH values of the supporting electrolyte, accumulation time and scan rate were optimized. Simplicity, high reproducibility and low detection limit (3 nM) of the electrode response as well as wide linear range (0.01 to 4.0 µM) can be stated as significant... 

    Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 586-594 ; 09284931 (ISSN) Mahmoudifard, M ; Soudi, S ; Soleimani, M ; Hosseinzadeh, S ; Esmaeili, E ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to... 

    Synthesis and characterization of new triphenylamine-based dyes with novel anchoring groups for dye-sensitized solar cell applications

    , Article Journal of Materials Science: Materials in Electronics ; Volume 28, Issue 2 , 2017 , Pages 1859-1868 ; 09574522 (ISSN) Salimi Beni, A ; Hosseinzadeh, B ; Azari, M ; Ghahary, R ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Three new chromophores based on the triphenylamine (MM, DM, DN) with various novel electron withdrawing anchoring groups have been synthesized for use in dye-sensitized solar cells (DSSCs). The sensitizers were characterized by 1H and 13C NMR, Mass, UV–Vis, and electrochemical analysis. The HOMO and LUMO electron distributions of the sensitizers were calculated using density functional theory on a B3LYP level for geometry optimization. The DSSC device based on DM dye showed the best photovoltaic performance among MM and DN dyes: maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 98 %, short circuit current (JSC) of 4.58 mA/cm2, open circuit voltage (VOC) of...