Loading...
Search for: electrochemical-methods
0.006 seconds
Total 42 records

    Synthesis and Characterization of a Composite of ZIF-8 and TiO2 NPs as a Photocatalyst Material for Water Treatment

    , M.Sc. Thesis Sharif University of Technology Sedighi, Omid (Author) ; Dolati, Abolghasem (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    During the past few years, hexavalent chromium (Cr(VI)) is of environmental concern due to its high toxicity and mobility. Therefore, removing it from industrial wastewater is of chief significance. In this research, efficient photocatalyst materials (xµLTiO2NPs@ZIF-8) for the reduction of Cr(VI) from water resources were firstly synthesized. This composite was prepared by an in situ method with zeolitic imidazolate framework-8 as the matrix. TiO2 and ZIF-8 were selected for their excellent stability in aqueous media, high photoactivity, non-toxicity, and high surface area. The structure of the as-synthesized materials was characterized by X-ray powder diffraction (XRD), scanning electron... 

    Blackening on Steel by Electrochemical Method

    , M.Sc. Thesis Sharif University of Technology Zare Mahdkhani, Shahin (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    In this study, the magnetite protective oxide layer was successfully formed on carbon steel substrate in an alkaline solution by an electrochemical method. The electroblackening was performed at a constant potential of 2 volts and in a 50 wt% solution at 75 ° C for 10 minutes. The properties of coating characterized using X-ray diffraction, field emission-scanning electron microscopy, polarization test and visible light spectrophotometery and porosity and thickness of oxide coating investigated. By adding 50 grams per liter of each of nitrate and chromate oxidizers, the porosity of oxide coating decreased from 24 percent to 14 percent and coating thickness increased from 1 micron to 3... 

    Study on the Exfoliation of Graphite into Graphene by Electrochemical Method and Its Application in Thermoplastic Polyurethane Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Razeghi, Mohammad Ali (Author) ; Pircheraghi, Gholamreza (Supervisor)
    Abstract
    Graphene is two dimensional nanomaterial, single layer of carbon atoms that exhibited excellent properties like high electrical conductivity and stiffness, but producing graphene and obtaining a good dispersion of graphene in a polymer matrix is still a major challenge. In this study by using the electrochemical route several graphene with different degree of oxidation produced in different electrolyte medium. According to XRD data, product of electrochemical exfoliation in dilute HNO3 medium includes 50% few-layer graphene (5 layers) and 25% GO and the rest are multi-layer graphene. Nonsolvent induced phase separation method were used to prepare TPU/Graphene nanocomposite. Different methods... 

    Nanostructural Coating of Al2O3 on NiTi Alloy Via Electrochemical Method for Improvement of Biomedical and Surface Properties

    , M.Sc. Thesis Sharif University of Technology Mahloujchi, Raziyeh (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    Nitinol alloy is important and increasingly used in medicine and industry due to its unique properties such as shape memory and superelasticity. Plasma Electrolytic Oxidation (PEO) is a relatively new method which in electrical discharge occurrence and formation of small plasma arcs on the anode surface and the electrochemical and thermochemical reactions in plasma environment prepare ceramic coating on the substrate. This method is taken into consideration because of its simplicity and effectiveness in the preparation of oxide ceramic coatings with porous structure on the surface of certain metals and alloys to improve their corrosion and wear properties. In this study, to improve the... 

    Electrochemical Desulfurization of Sample Oil

    , Ph.D. Dissertation Sharif University of Technology Tavan, Yadollah (Author) ; Farhadi, Fatolla (Supervisor) ; Shahrokhi, Mohammad (Co-Supervisor)
    Abstract
    Since, presence of sulfur compounds in fuels leads to environmental pollution and deacrese of fuel quality, fuel desulfurization should be considered for enhancing the fuel charachteristics. Electrochemical desulfurization was recogonized as one of desulfurization techniques that uses anode and cathode in an electrolytic environment under mild temperature and pressure. In this research, electrochemical desulfurization of crude gas-oil has been studied over electrodes of copper and stainless steel in the presence of NaOH and sulfuric acid. In this research, the effects of operational prameters like stirring rate, temperature, applied potential, sodium hydroxide/sulfuric acid addition as... 

    Preparation and Physico-chemical Characterization of Titanium Dioxide Nanotubes with Electrochemical Method for Oxidative Dehydrogenation of Propane (ODHP)

    , M.Sc. Thesis Sharif University of Technology Nik-khah, Maryam (Author) ; Kazemeini, mohammad (Supervisor)
    Abstract
    Samples of the V2O5 catalysts supported on nanostructures of TiO2 and γ-Al2O3 were synthesized via hydrothermal method for the oxidative dehydrogenation of propane (ODHP) to propylene. The TiO2 support was utilized in both commercial microstructures and prepared nanostructures from their corresponding salts. Furthermore,the γ-Al2O3 was also prepared from two novel methods. Moreover, the vanadium catalysts supported on hybrid TiO2 and γ-Al2O3 were prepared. The performances of the prepared catalysts were subsequently examined in a fixed-bed reactor. The main products were propylene, ethylene and COx.The vanadium catalyst over TiO2 and γ-Al2O3 had the best performance under the reactor test... 

    Deposition of Nanoporous Metallic Thin Films by Sputtering and Comparing with Electrochemical Method (Electroplating)

    , M.Sc. Thesis Sharif University of Technology Monjezi, Hossein (Author) ; Rashidian, Bijan (Supervisor)
    Abstract
    Porous thin films have becom very atractive due to their applications in many types of electronic and optical devices. There are several methods for deposition of such films. Chemical method for deposition of nanoporous thin films are relatively simple, but usually hard to control. In this thesis, chemical deposition of thin porous Molybden films is reported. In addition, an available sputtering system has been modified and, controlled porosity thin films were then deposited on glass and silicon substrates using GLAD method.These films have been characerized, and compared with chemically deposited porous thin films  

    Synthesis of Graphene Nanosheets for Application in Biosensors

    , M.Sc. Thesis Sharif University of Technology Rahighi Yazdi, Reza (Author) ; Akhavan, Omid (Supervisor)
    Abstract
    Graphene, the newborn nanomaterial whose unique properties has extensively drawnattention of many scientists in the recent years, is an ideal candidate for sensing applications due to its exclusive properties like extremely high specific surface area, excellent electrical conductivity, andcapability of being easily functionalized. In this research, after reviewing the attempts already performed on detection of DNA, in order to detect the four bases of DNA (G, A, T, and C) via electrochemical approach, graphene nanosheets were synthesized by the popular Hummer’s method and were deposited on a graphite rod by electrophoretic deposition with a vertical preferred orientation. To eliminate the... 

    Investigation on Parameters of Carbon Nanotubes Growth and Effect of Interaction between H2 Gas and their Surfaces and Determining Capacity of Hydrogen Storage

    , Ph.D. Dissertation Sharif University of Technology Reyhani, Ali (Author) ; Moshfegh, Alireza (Supervisor) ; Nozad, Ahmad (Supervisor)
    Abstract
    In this study, growth of MWCNTs in form of thin film and powder for hydrogen storage was investigated. Different analytical techniques including SEM, TEM, STA, XRD, XPS, BET, BJH and Raman spectroscopy were applied to characterize the samples. The results showed that substrate, catalyst thickness and type of catalyst are influenced in yield of the growth, structure and quality of MWCNTs. The study has also indicated that MWCNTs grown on Fe-Pd bimetallic catalyst with 25-75 proportion had the highest growth yield. Moreover, decreasing of the growth temperature from 970 to 920 oC produced single-walled carbon nanotubes (SWCNTs) with high quality (IG/ID = 15.8) and low growth yield.... 

    Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates

    , Article Materials and Design ; Volume 43 , January , 2013 , Pages 467-474 ; 02641275 (ISSN) Zareie Rajani, H. R ; Akbari Mousavi, S. A. A ; Madani Sani, F ; Sharif University of Technology
    2013
    Abstract
    One of the main concerns in cladding Inconel 625 superalloy on desired substrates is deterioration of corrosion resistance due to cladding process. The present study aims to compare the effect of fusion cladding and explosive cladding procedures on corrosion behavior of Inconel 625 cladding on plain carbon steel as substrate. Also, an attempt has been made to investigate the role of load ratio and numbers of fusion layers in corrosion behavior of explosive and fusion cladding Inconel 625 respectively. In all cases, the cyclic polarization as an electrochemical method has been applied to assess the corrosion behavior. According to the obtained results, both cladding methods aggravate the... 

    Kinetic studies of glucose electrocatalytic oxidation on GC/Ni electrode

    , Article International Journal of Chemical Kinetics ; Volume 44, Issue 11 , 2012 , Pages 712-721 ; 05388066 (ISSN) Danaee, I ; Jafarian, M ; Forouzandeh, F ; Gobal, F ; Sharif University of Technology
    2012
    Abstract
    Nickel-modified glassy carbon electrode (GC/Ni) prepared by galvanostatic deposition was used for the electrocatalytic oxidation of glucose in alkaline solutions where different electrochemical methods were employed. In cyclic voltammetry studies, in the presence of glucose an increase in the peak current of the oxidation of nickel hydroxide is followed by a decrease in the corresponding cathodic current. This suggests that the oxidation of glucose is being catalyzed through mediated electron transfer across the nickel hydroxide layer comprising nickel ions of various valence states. Under the chronoamperometric regime, the reaction followed a Cottrellian behavior and the diffusion... 

    Electrochemical determinations of 6-mercaptopurine on the surface of a carbon nanotube-paste electrode modified with a cobalt salophen complex

    , Article Journal of Solid State Electrochemistry ; Volume 16, Issue 4 , April , 2012 , Pages 1643-1650 ; 14328488 (ISSN) Shahrokhian, S ; Ghorbani Bidkorbeh, F ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    2012
    Abstract
    A mixture of multi-walled carbon nanotube/graphite paste electrode modified with a salophen complex of cobalt was prepared and was applied for the study of the electrochemical behavior of 6-mercaptopurine (MP) using cyclic and differential pulse voltammetry (DPV). An excellent electrocatalytic activity toward the oxidation of MP was achieved, which led to a considerable lowering in the anodic overpotential and remarkable increase in the response sensitivity in comparison with unmodified electrode. Utilizing DPV method, a linear dynamic range of 1-100 μM with detection limit of 0.1 μM was obtained in phosphate buffer of pH 3.0. The electrochemical detection system was very stable, and the... 

    The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane

    , Article Renewable Energy ; Volume 36, Issue 12 , December , 2011 , Pages 3319-3331 ; 09601481 (ISSN) Tavakoli, B ; Roshandel, R ; Sharif University of Technology
    2011
    Abstract
    Models play an important role in fuel cell design and development. One of the critical problems to overcome in the proton exchange membrane (PEM) fuel cells is the water management. In this work a steady state, two-dimensional, isothermal model in a single PEM fuel cell using individual computational fluid dynamics code was presented. Special attention was devoted to the water transport through the membrane which is assumed to be combined effect of diffusion, electro-osmotic drag and convection. The effect of current density variation distribution on the water content (λ) in membrane/electrode assembly (MEA) was determined. In this work the membrane heat conductivity is considered as a... 

    A comparative study on photoelectrochemical activity of ZnO/TiO2 and TiO2/ZnO nanolayer systems under visible irradiation

    , Article Solar Energy ; Volume 85, Issue 9 , 2011 , Pages 1972-1978 ; 0038092X (ISSN) Naseri, N ; Yousefi, M ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    TiO2/ZnO and ZnO/TiO2 nanolayer thin films were synthesized using sol-gel method. Optical analysis revealed high transmittance of the films in the visible range with almost the same bandgap energy for the both systems. XPS technique shows stoichiometric formation of TiO2 and ZnO on the surface of TiO2/ZnO and ZnO/TiO2 layers, respectively. According to AFM observations and its data analysis, the TiO2/ZnO films exhibited a higher surface roughness and more effective interfaces with electrolyte during redox reactions. Based on photoelectrochemical measurements, TiO2/ZnO nanolayer photoanode possesses a lower charge transfer resistance and higher transient time for charge carriers (e- and h+)... 

    Zn-Ni Electrophosphating on galvanized steel using cathodic and anodic electrochemical methods

    , Article Surface and Coatings Technology ; January , 2015 ; 02578972 (ISSN) Darband, G. B ; Afshar, A ; Aliabadi, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Electrophosphating is the novel method for accelerating the low temperature phosphating bath. This method can be performed as cathodic and anodic treatments. Both of them influence the coating deposition mechanism and therefore coating properties. In this study Zn-Ni electrophosphate coating was applied on galvanized steel using cathodic and anodic electrochemical methods. Microstructure, composition and corrosion resistance of coating were characterized by using a scanning electron microscopy, X-ray diffraction method and potentiodynamic polarization test respectively. The results of this study indicated that, by using cathodic method, compact phosphate coating with high corrosion... 

    Electrochemical determination of CdS band edges and semiconducting parameters

    , Article Bulletin of the Chemical Society of Japan ; Volume 88, Issue 6 , February , 2015 , Pages 814-820 ; 00092673 (ISSN) Miandari, S ; Jafarian, M ; Mahjani, M. G ; Gobal, F ; Heidaripour, A ; Sharif University of Technology
    Chemical Society of Japan  2015
    Abstract
    Cadmium sulfide (CdS) thin film was electrodeposited on indium tin oxide (ITO) by chronoamperometry. The SEM images showed that hexagonal sheets of CdS deposited on the ITO surface. The X-ray diffraction (XRD) analysis confirmed this structure for CdS crystals and the average of crystalline size and the lattice constant parameters are approximately 39.54 and a = 0.4136, c = 0.6696 nm respectively. Photo-electrochemical investigations were performed by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) techniques. CdS band edges and density of states (DOS) were determined by CV technique. The band gap energy (Ebg) was measured... 

    Softening of bond stretching phonon mode in Ba 1-x K x BiO 3 superconductor

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 23, Issue 7 , 2010 , Pages 1385-1389 ; 15571939 (ISSN) Khosroabadi, H ; Kobayashi, J ; Tanaka, K ; Miyasaka, S ; Tajima, S ; Uchiyama, H ; Baron, A. Q. R ; Sharif University of Technology
    2010
    Abstract
    Single crystals of Ba 1-x K x BiO 3 compound for different values of x (0 x 0.6) from insulator to superconducting region have been grown by electrochemical method. The crystals have been characterized by powder X-ray diffraction and Laue X-ray to determine the crystal structure, phases and potassium concentration. The phonon dispersion of the crystals in (100) direction has been investigated by high-resolution inelastic X-ray scattering. The phonon dispersion for low energy region is almost similar for all crystals measured in this study, while the higher energy modes shift to higher energy by increasing the potassium concentration. Anomalous softening of highest energy phonon has been... 

    A study on the kinetics of gold nanowire electrodeposition in polycarbonate templates

    , Article Journal of Electroanalytical Chemistry ; Volume 645, Issue 1 , June , 2010 , Pages 28-34 ; 15726657 (ISSN) Soleimany, L ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2010
    Abstract
    Electrodeposition of gold nanowires is carried out in cyanide solution in polycarbonate templates with pore diameter of 80 nm. Electrochemical methods are utilized to characterize the gold electrodeposition and to obtain the nucleation and growth mechanism. The analysis of cyclic voltammograms shows that the electrodeposition of gold nanowires takes place under diffusion control. Current transients reveal that nucleation mechanism is instantaneous with a three-dimensional growth process. The transition-time measurements show that the gold elecrodeposition occurs as one-electron valence involved in the reaction mechanism. Charge transfer coefficient is also found to be 0.67 ± 0.01. The value... 

    Electrochemical determination of naltrexone on the surface of glassy carbon electrode modified with Nafion-doped carbon nanoparticles: Application to determinations in pharmaceutical and clinical preparations

    , Article Journal of Electroanalytical Chemistry ; Volume 638, Issue 2 , 2010 , Pages 212-217 ; 15726657 (ISSN) Ghorbani Bidkorbeh, F ; Shahrokhian, S ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    Abstract
    A new sensitive and selective electrochemical sensor was developed for determination of naltrexone (NAL) in pharmaceutical dosage form and human plasma. Naltrexone is an opioid antagonist which is commonly used for the treatment of narcotic addiction and alcohol dependence. A voltammetric study of naltrexone has been carried out at the surface of glassy carbon electrode (GCE) modified with Nafion-doped carbon nanoparticles (CNPs). The electrochemical oxidation of naltrexone was investigated by cyclic and differential pulse voltammetric techniques. The dependence of peak currents and potentials on pH, concentration and the potential scan rate was investigated. The electrode characterization... 

    Zn–Ni electrophosphating on galvanized steel using cathodic and anodic electrochemical methods

    , Article Surface and Coatings Technology ; Volume 306 , 2016 , Pages 497-505 ; 02578972 (ISSN) Barati Darband, Gh ; Afshar, A ; Aliabadi, A ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    Electrophosphating is the novel method for accelerating the low temperature phosphating bath. This method can be performed as cathodic and anodic treatments. Both of them influence the coating deposition mechanism and therefore coating properties. In this study Zn–Ni electrophosphate coating was applied on galvanized steel using cathodic and anodic electrochemical methods. Microstructure, composition and corrosion resistance of coating were characterized by using a scanning electron microscopy, X-ray diffraction method and potentiodynamic polarization test respectively. The results of this study indicated that, by using cathodic method, compact phosphate coating with high corrosion...