Loading...
Search for: electrooxidation
0.011 seconds
Total 33 records

    Modification of Electrode Substrates Using Nanocomposites Including Carbon Nanomaterials and Multimetallic Nanoparticles for Electrocatalysis of some Fuel Cells Reactions

    , Ph.D. Dissertation Sharif University of Technology Rezaee, Sharifeh (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In this research, nanocomposite containing reduced graphene oxide nanosheets (RGO) and trimetallic three-dimensional (3D) Pt-Pd-Co porous nanostructures was fabricated by galvanic replacement technique. First, GO suspension was drop-casted on the electrode surface, then GO film reduction was carried out by cycling the potential in negative direction to form the RGO on GCE (RGO/GCE). Then, electrodeposition of the cobalt nanoparticles (CoNPs) as sacrificial seeds was performed onto the RGO/GCE by using cyclic voltammetry. Afterward, Pt-Pd-Co 3D porous nanostructures fabrication occurs through galvanic replacement method based on a spontaneous redox process between CoNPs and solution... 

    Facile synthesis of N-doped hollow carbon nanospheres wrapped with transition metal oxides nanostructures as non-precious catalysts for the electro-oxidation of hydrazine

    , Article Journal of Electroanalytical Chemistry ; Volume 873 , 2020 Taghaddosi, S ; Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In the present work, N-doped hollow carbon nanospheres (N-HCNSs) is prepared by direct carbonization of polyaniline-co-polypyrrole (PACP) hollow spheres without template needing. Two different NiO nanostructures (nanosheets and nanowires) are prepared by forming a shell around the N-HCNSs via simple hydrothermal/calcination processes (NiO-NSs@N-HCNSs and NiO-NWs@N-HCNSs). The morphology and structure of the nanostructures are characterized using field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The prepared nanocomposites are used as catalysts for the electrocatalytic... 

    Electrochemical determination of clozapine on MWCNTs/new coccine doped ppy modified GCE: An experimental design approach

    , Article Bioelectrochemistry ; Volume 90 , 2013 , Pages 36-43 ; 15675394 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Hamzehloei, A ; Sharif University of Technology
    2013
    Abstract
    The electrooxidation of clozapine (CLZ) was studied on the surface of a glassy carbon electrode (GCE) modified with a thin film of multiwalled carbon nanotubes (MWCNTs)/new coccine (NC) doped polypyrrole (PPY) by using linear sweep voltammetry (LSV). The pH of the supporting electrolyte (D), drop size of the cast MWCNTs suspension (E) and accumulation time of CLZ on the surface of modified electrode (F) was considered as effective experimental factors and the oxidation peak current of CLZ was selected as the response. By using factorial-based response-surface methodology, the optimum values of factors were obtained as 5.44, 10 μL and 300 s for D, E and F respectively. Under the optimized... 

    Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir

    , Article Materials Science and Engineering C ; Volume 53 , 2015 , Pages 134-141 ; 09284931 (ISSN) Shahrokhian, S ; Azimzadeh, M ; Amini, M. K ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of... 

    Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation

    , Article Electrochimica Acta ; Volume 259 , 2018 , Pages 36-47 ; 00134686 (ISSN) Shahrokhian, S ; Rezaee, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The present study reports a simple electrochemical approach to the fabrication of a new nanocomposite containing PtPd nanoflowers (NFs) promoted with two-dimensional (2D) nanosheets (NSs) structure cuprous oxide (Cu2O) supported on reduced graphene oxide (rGO) (PtPd-NFs/Cu2O-NSs/rGO). Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, Raman spectroscopy, and energy dispersive X-ray spectroscopy are used for characterization of the PtPd-NPs/Cu2O-NPs/rGO. SEM images showed that vertical-standing arrays of Cu2O with an edge length up to 1 μm and thickness of about 20 nm are electrodeposited on the surface of rGO film. Also, PtPd needle-like NFs with visible and... 

    Advanced on-site glucose sensing platform based on a new architecture of free-standing hollow Cu(OH)2 nanotubes decorated with CoNi-LDH nanosheets on graphite screen-printed electrode

    , Article Nanoscale ; Volume 11, Issue 26 , 2019 , Pages 12655-12671 ; 20403364 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    The planned design of nanocomposites combined with manageable production processes, which can offer controllability over the nanomaterial structure, promises the practical applications of functional nanomaterials. Hollow core-shell nanostructure architectures represent an emerging category of advanced functional nanomaterials, whose benefits derived from their notable properties may be hampered by complicated construction processes, especially in the sensing domain. In this regard, we designed a highly porous three-dimensional array of hierarchical hetero Cu(OH)2@CoNi-LDH core-shell nanotubes via a quick, very simple, green, and highly controllable three-step in situ method; they were... 

    Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan

    , Article Sensors and Actuators, B: Chemical ; Volume 123, Issue 2 , 2007 , Pages 942-949 ; 09254005 (ISSN) Shahrokhian, S ; Fotouhi, L ; Sharif University of Technology
    2007
    Abstract
    A modified carbon paste electrode is prepared by incorporating multi-walled carbon nanotube (MWCNT) and cobalt salophen (CoSal). A mixture of fine graphite powder with 10 wt% of MWCNT is applied for the preparation of carbon paste (by dispersing in Nujol) and finally modified with CoSal. The electrocatalytic oxidation of tryptophan (Trp) is investigated on the surface of the MWCNT/CoSal-modified electrode using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Using the modified electrode, the kinetics of the electro-oxidation of Trp is considerably enhanced, by lowering the anodic overpotential through a catalytic fashion. The mechanism of electrochemical behavior of Trp at... 

    Ni(II) 1D-coordination polymer/C 60 -modified glassy carbon electrode as a highly sensitive non-enzymatic glucose electrochemical sensor

    , Article Applied Surface Science ; Volume 478 , 2019 , Pages 361-372 ; 01694332 (ISSN) Shahhoseini, L ; Mohammadi, R ; Ghanbari, B ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A new non-enzymatic sensor for glucose is prepared by using of Ni(II)-one dimensional coordination polymer (Ni(II)-Cp) and C 60 . The Ni(II)-Cp prepared by slow diffusion and evaporation of two solution layers of NiCl 2 and diaza-macrocycle bearing two pyridine side arms (as the reported tecton) in DMF. The Ni(II)-Cp was characterized by powder x-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) as well as Fourier transform infrared spectroscopy (FT-IR). C 60 as modified was added to Ni(II)-Cp for improving the electrical and chemical stability of the composite. The newly assembled Ni(II)-Cp/C 60 also coated on glassy carbon electrode (GC) to... 

    Synergistic effect of cobalt and copper on a nickel-based modified graphite electrode during methanol electro-oxidation in NaOH solution

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 36, Issue 11 , 2015 , Pages 1867-1874 ; 02539837 (ISSN) Rostami, T ; Jafarian, M ; Miandari, S ; Mahjani, M. G ; Gobal, F ; Sharif University of Technology
    Abstract
    The electrocatalytic oxidation of methanol was studied over Ni, Co and Cu binary or ternary alloys on graphite electrodes in a NaOH solution (0.1 mol/L). The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of methanol, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a significantly higher response for methanol oxidation compared to the other samples. The anodic peak... 

    Nanocomposite with promoted electrocatalytic behavior based on bimetallic pd-ni nanoparticles, manganese dioxide, and reduced graphene oxide for efficient electrooxidation of ethanol

    , Article Journal of Physical Chemistry C ; Volume 122, Issue 18 , 2018 , Pages 9783-9794 ; 19327447 (ISSN) Rezaee, S ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    In this work, a nanocomposite containing manganese dioxide (MnO2) modified reduced graphene oxide (rGO) supported bimetallic palladium-nickel (Pd-Ni) catalyst is prepared by electrodeposition method. The nanocomposite modifier film is prepared by forming a thin layer of graphene oxide (GO) via drop-casting of GO nanosheet dispersion on glassy carbon electrode (GCE), followed by electrochemical reduction of the film to provide rGO/GCE. Then, a two-step potential procedure is applied to deposit MnO2 nanoparticles on rGO/GCE. At the optimum deposition conditions, MnO2 nanoparticles with a thickness of 30-50 nm homogeneously covered the rGO surface (MnO2/rGO/GCE). Finally, the bimetallic Pd-Ni... 

    Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol

    , Article Applied Catalysis B: Environmental ; Volume 244 , 2019 , Pages 802-813 ; 09263373 (ISSN) Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Porous carbon template decorated with mixed transition metals/metal oxides with tunable architecture is becoming increasingly important and attractive as a kind of novel electrode materials. In this way, mixed-metallic metal-organic frameworks (MOFs) provide an opportunity for fabrication of homogeneous mixed metals/metal oxides distribution in the porous carbon frame without any carbon precursor additive. Also, structures, dimensions and electrochemical performance of MOFs can be readily manipulated by simply tuning the metals molar ratio. In this study, we demonstrate the design and fabrication of petal-like NiCo/NiO-CoO metal/metal oxides with a rational composition embedded in 3D... 

    3D ternary Ni: XCo2- xP/C nanoflower/nanourchin arrays grown on HCNs: A highly efficient bi-functional electrocatalyst for boosting hydrogen production via the urea electro-oxidation reaction

    , Article Nanoscale ; Volume 12, Issue 30 , 2020 , Pages 16123-16135 Rezaee, S ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Over the last few years, substantial efforts have been made to develop earth-abundant bi-functional catalysts for urea oxidation and energy-saving electrolytic hydrogen production due to their low cost and the potential to replace traditional noble-metal-based catalysts. Nevertheless, finding a straightforward and effective route to prepare efficient catalysts with unique structural features and optimal supports still is a big challenge. Among the various candidates, metal-organic framework (MOF)-derived materials show great advantages as new kinds of active non-precious catalysts. On the other hand, the controllable integration of MOFs and carbon-based nanomaterials leads to further... 

    Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: Layer-by-layer electrochemical preparation, characterization and rifampicin sensory application

    , Article Talanta ; Vol. 119 , 2014 , pp. 156-163 ; ISSN: 00399140 Rastgar, S ; Shahrokhian, S ; Sharif University of Technology
    Abstract
    Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of nickel hydroxide nanoparticle-reduced graphene oxide nanosheets (Ni(OH)2-RGO) on a graphene oxide (GO) film pre-cast on a glassy carbon electrode surface. The surface morphology and nature of the nano-hybrid film (Ni(OH)2-RGO) was thoroughly characterized by scanning electron and atomic force microscopy, spectroscopy and electrochemical techniques. The modified electrode appeared as an effective electro-catalytic model for analysis of rifampicin (RIF) by using linear sweep voltammetry (LSV). The prepared modified electrode exhibited a distinctly higher activity... 

    Sensitive voltammetric detection of melatonin in pharmaceutical products by highly conductive porous graphene-gold composites

    , Article ACS Sustainable Chemistry and Engineering ; 2020 Rahmati, R ; Hemmati, A ; Mohammadi, R ; Hatamie, A ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    This work presents a novel melatonin sensor based on unfunctionalized macroporous graphene networks decorated with gold nanoparticles for the differential pulse voltammetric detection of melatonin in pharmaceutical products. Highly porous graphene structures were prepared by metallic template-assisted chemical vapor deposition, and their active surface area and electrocatalytic activity were improved by electrochemical deposition of gold nanoparticles (50-250 nm) on their struts. The graphene-gold electrodes present a highly sensitive performance toward electro-oxidation of melatonin with a wide linear range of 0.05-50 μM, a low detection limit of 0.0082 μM (3σ/m), and a significant... 

    Efficient electrocatalytic oxidation of water and glucose on dendritic-shaped multicomponent transition metals/spongy graphene composites

    , Article Electrochimica Acta ; Volume 386 , 2021 ; 00134686 (ISSN) Nourmohammadi Khiarak, B ; Mohammadi, R ; Mojaddami, M ; Rahmati, R ; Hemmati, A ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    To improve the efficiency of electrochemical processes for environmental remediation, we present a new type of hybrid nanomaterials based on leaf-like copper-based quaternary transition metals and spongy monolayer graphene. To demonstrate the functionality of the hybrid electrocatalyst, fast and competent electrooxidation of water and glucose is shown. The mechanism of improved catalysis is ascribed to the synergetic catalytic effect of quaternary Cu-Ni-Fe-Co alloy with dendritic morphology along with the highly conductive and spongy structure of the graphene monolayer. It is shown that water oxidation can be performed at a low overpotential of 315 mV to reach a current denisty of 100 mA... 

    Numerical simulation of a microfluidic system for regular glucose measurement

    , Article 26th National and 4th International Iranian Conference on Biomedical Engineering, ICBME 2019, 27 November 2019 through 28 November 2019 ; 2019 , Pages 60-65 ; 9781728156637 (ISBN) Najmi, A ; Saidi, M. S ; Shahrokhian, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The aim of this research is to design an implantable integrated microfluidic system in order to regularly measure the glucose level in the human body, nonenzymatically, using the microdialysis method. The main compartments of this system are a micropump, array of hollow microneedles and an electrochemical sensor. At the base of the microneedles, there are located semipermeable membranes, that when the pumped dialysis fluid passes over them, the glucose of the interstitial fluid diffuses into the dialysis fluid and then, in the sensor section, it is measured nonenzymatically using the amperometry method. Both the arrangement of the miconeedles and the amount of the dialysis fluid flow are... 

    Electrochemical investigation of electrodeposited platinum nanoparticles on multi walled carbon nanotubes for methanol electro-oxidation

    , Article Journal of Chemical Sciences ; Volume 129, Issue 9 , 2017 , Pages 1399-1410 ; 09743626 (ISSN) Mokarami Ghartavol, H ; Moakhar, R. S ; Dolati, A ; Sharif University of Technology
    Abstract
    Abstract: The electrodeposition of platinum nanoparticles (PtNPs) on multiwall carbon nanotubes (MWCNTs)/fluorine-doped tin oxide glass (FTO) was investigated. Nucleation and growth mechanisms were studied via Scharifker and Hills model. Chronoamperometry results clearly show that the electrodeposition processes are diffusion-controlled and the diffusion coefficient is 1.5×10-5cm2/s. The semi-spherical particles with lamellar morphology were observed in 1M H 2SO 4, while a petal shape was discerned in 0.5M H 2SO 4. Also, dispersion, size, and uniformity of PtNPs were investigated, where the finer distribution of PtNPs with the average size less than 100 nm was obtained in 0.5M H 2SO 4... 

    Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2,2′-[1,2 butanediylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 76, Issue 1 , 2010 , Pages 82-87 ; 09277765 (ISSN) Mazloum Ardakani, M ; Beitollahi, H ; Sheikh Mohseni, M. A ; Benvidi, A ; Naeimi, H ; Nejati Barzoki, M ; Taghavinia, N ; Sharif University of Technology
    2010
    Abstract
    A carbon paste electrode (CPE) modified with 2,2′-[1,2 butanediylbis(nitriloethylidyne)]-bis-hydroquinone (BBNBH) and TiO2 nanoparticles was used for the sensitive voltammetric determination of epinephrine (EP). The electrochemical response characteristics of the modified electrode toward EP and acetaminophen (AC) were investigated by cyclic and differential pulse voltammetry (CV and DPV). The results showed an efficient catalytic activity of the electrode for the electrooxidation of EP, which leads to a reduction in its overpotential by more than 270 mV. The effects of pH and potential sweep rate on the mechanism of the electrode process were investigated. The modified electrode exhibits an... 

    Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode

    , Article Journal of Electroanalytical Chemistry ; Volume 624, Issue 1-2 , 2008 , Pages 73-78 ; 15726657 (ISSN) Mazloum Ardakani, M ; Taleat, Z ; Beitollahi, H ; Salavati Niasari, M ; Mirjalili, B. B. F ; Taghavinia, N ; Sharif University of Technology
    Elsevier  2008
    Abstract
    A modified carbon paste electrode was prepared by incorporating TiO2 nanoparticles with bis[bis(salicylidene-1,4-phenylenediamine)molybdenum(VI)]. A mixture of fine graphite powder with 4 wt% of TiO2 nanoparticles was applied for the preparation of the carbon paste (by dispersing in paraffin) and finally modified with a molybdenum (VI) complex. The electrocatalytic oxidation of guanine (G) was investigated on the surface of the molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode (MCTNMCPE) using cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry (CHA) and chronocoloumetry (CHC). Using the modified electrode, the kinetics of G... 

    Direct conversion of inorganic complexes to platinum/thin oxide nanoparticles decorated on MOF-derived chromium oxide/nanoporous carbon composite as an efficient electrocatalyst for ethanol oxidation reaction

    , Article Journal of Colloid and Interface Science ; Volume 555 , 2019 , Pages 655-666 ; 00219797 (ISSN) Kamyar, N ; Rezaee, S ; Shahrokhian, S ; Amini, M. M ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    In this work, we present the design and fabrication of a novel nanocomposite based on noble metal and metal oxide nanoparticles dispersed on highly porous carbon obtained via the pyrolysis of an inorganic complex and metal-organic frameworks. This nanocomposite is prepared by a two-step procedure: first, the composite support of nanoporous carbon (NPC) is obtained by the direct carbonization of the Cr-benzene dicarboxylic ligand (BDC) MOF in an Argon atmosphere at 500 °C (Cr2O3-NPC). A mixture containing Cr2O3-NPC and [PtCl(SnCl3)(SMe2)2] is then prepared, and underflow of Argon is heated to 380 °C. Finally, Pt-SnO2 nanoparticles are loaded on the Cr2O3-NPC support, and the obtained...