Loading...
Search for: flexibility
0.014 seconds
Total 416 records

    Boundary Stabilization and Motion Control of Flexible Crane Systems

    , Ph.D. Dissertation Sharif University of Technology Entessari, Farshid (Author) ; Alasty, Aria (Supervisor) ; Najafi Ardekany, Ali (Supervisor)
    Abstract
    In recent years, boundary control (BC) approach for distributed parameter systems and their applications has demonstrated that it can be a well-intentioned candidate for control system design. In this approach, the main focus is on the boundary actions, where the actuators are aligned on the boundaries of the media. BC may be considered as an ideal approach, especially from applied and engineering point of view, because it deals only with actuators and sensors along the boundaries. Moreover, the problem of boundary stabilization and motion control of flexible crane systems has been one of the remarkable problems for control engineers. In this research, we contemplate the boundary control... 

    Design and Fabrication of a Fish Robot

    , M.Sc. Thesis Sharif University of Technology Hosseini, Saeed (Author) ; Meghdari, Ali (Supervisor) ; Selk Ghafari, Ali (Supervisor)
    Abstract
    In this research a robotic fish was designed and fabricated. For this propose different types of manufactured robotic fish were investigated and this model was developed and made with a one-piece flexible tail with an actuator that creates lateral movement through cable strings attached to the tail. Proposed mechanism has a simple, low cost structure that facilitates the control of the robotic fish movement. To control this robotic fish, a four-channel radio controller with 40 kHz frequency, was used. Swimming mode of this robotic fish is categorized in Subcarangiform swimming mode which is faster and has better maneuverability compared to its counterparts. It should be noted that the... 

    Dynamic Analysis & Control of a Biomimetic Robotic Fish Employing the Bond Graph Approach

    , M.Sc. Thesis Sharif University of Technology Daryani Tabrizi, Kasra (Author) ; Selk Ghafari, Ali (Supervisor) ; Meghdari, Ali (Supervisor)
    Abstract
    In this thesis, a dynamic model of the biomimetic robotic fish with a flexible tail is developed. In this model, the oscillating frequency of the tail controls the forward velocity, and the body spline offset parameter controls the heading angle. The robotic fish were divided to two parts: a rigid body, and a flexible tail. The rigid body includes the head and the electrical and mechanical equipment. The bond graph model was developed and the numerical values were extracted from constructed robotic fish have also been hydrodynamically analyzed. Simulation results were quantitatively compared and verified with Matlab Simmechanics simulations. These simulations described the lateral movement... 

    Developing a Method for the Dynamic Analysis of Flexible Flapping Wing

    , M.Sc. Thesis Sharif University of Technology Jahanbin, Zahra (Author) ; Meghdari, Ali (Supervisor)
    Abstract
    Flapping is one of the most usual solutions to produce aerodynamic lift and propulsive force in natural flights, in low Reynolds number. A sample flapping wing mechanism in which propulsion system consists of a battery, two very small DC electrical motors, two gearboxes, a flapping mechanism and flexible beams as wings is studied in this project.Different methods have been proposed to derive the governing equations of motion and simulate the flapping wing system. The main disadvantage of the previous proposed works is the lack of a comprehensive dynamical analysis of the complete system including its components.Therefore, the main objective of the present research is to propose an efficient... 

    Lateral Translation of a Flexible Disk Embedded in a Transversely Isotropic Half-Safe

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Farzad (Author) ; Mohammadi Shodja, Hossein (Supervisor) ; Eskandari, Morteza (Supervisor)
    Abstract
    In this thesis, pull-in of nano/micromirrors under effects of capillary, Casimir and van der Waals (vdW) forces is investigated based on two models. In the first model, only rotation of torsional beams of mirror is considered. In the second model, effect of bending of the torsional beams is also considered. The static behavior of the mirror under capillary, Casimir and vdW loading are also studied using these models. Results show that neglecting bending effect, can lead to considerable overestimation in predicting the pull-in limits of the nano/micromirrors under these forces. Results reveal that the static behavior of the nano/micromirrors under these forces highly depends on the... 

    Meta-Heuristic Algorithm for Minimization of Total Tardiness in Flexible Flow Shop Scheduling Problems

    , M.Sc. Thesis Sharif University of Technology Gharehbaghi, Alireza (Author) ; Salmasi, Nasser (Supervisor) ; Shavandi, Hassan (Co-Supervisor) ; Najafi, Amir Abbas (Co-Supervisor)
    Abstract
    This study deals with the heuristic solution of flexible flow shop scheduling problems with unrelated parallel machines. No preemption of jobs is allowed. As an objective function, this paper considers the minimization of total tardiness. As a first step to propose solution, two different mixed integer mathematical models are developed which tackle the problem at hand. The problem is NP-hard and thus the developed mathematical program can only solve problem instances for small sizes in a reasonable amount of time. The next step is to build heuristics which can provide feasible solutions in polynomial time for larger problem instances. Then in the study develops a constructive heuristic for... 

    Fabrication of a Tactile Sensor Based on Triboelectric Nanogenerators

    , Ph.D. Dissertation Sharif University of Technology Zamanpour, Fahimeh (Author) ; Mohammadpour, Raheleh (Supervisor) ; Sasanpour, Pezhman (Supervisor)
    Abstract
    Humans need the five senses to understand and interact constructively with their surrounding environment; in the world of robots and intelligent systems, this is achieved using sensors. In the modern world, tactile sensors based on triboelectric effect play a prominent role in important application areas such as health monitoring, human-computer interaction, robotics, pressure mapping, and electronic signature. Triboelectric nanogenerators (TENGs) are one type of energy harvesting systems that convert mechanical energy into electrical energy. In these sensors, due to the contact and touch with the triboelectric material, an electric charge is generated and induced into the electrode, then... 

    Developing a Framework for Providing the Flexibility of Active Consumers of Energy Distribution Networks

    , M.Sc. Thesis Sharif University of Technology Ostovar, Sara (Author) ; Moeini Aghtaie, Moein (Supervisor)
    Abstract
    The power systems’ net-load variability and uncertainty would aggravate significantly as the penetration of Renewable Energy Resources (RERs) in power systems increases. In response, power system researchers have introduced a new concept, namely flexibility, to quantitatively and systematically deal with unavoidable features of RERs. In power distribution systems as the connection point of power systems with customers, there are many opportunities for improving the flexibility level of systems. Nowadays, the emergence of prosumers has created new opportunities for distribution system operators in providing the system with different services of flexibility in distribution systems. Therefore,... 

    Fabrication and Surface Engineering of Pu-Tio2 Nanocomposites with Improved Mechanical, Surface and Hemocompatibility Properties with Usability in Vascular Tissue Engineering

    , Ph.D. Dissertation Sharif University of Technology Kianpour, Ghazal (Author) ; Baghery, Reza (Supervisor) ; Pourjavadi, Ali (Supervisor) ; Ghanbari, Hossein (Supervisor)
    Abstract
    The main focus of this project is the fabrication of surface engineering scaffolds based on polyurethane and titanium dioxide. The research's aim is the creation of the synergistic properties of TiO2 and PU as a new strategy for engineering artificial autologous blood vessels. In the first section, PU-TiO2 nanocomposites were synthesized by co-insitu synthesis of nanoparticles and polymer. The nanocomposite films were prepared by solvent casting and thermally induced phase separation methods. Mechanical and biological properties of films were compared with pure PU film. In solvent casting method, the outcomes revealed that the rate of endothelialization of the nanocomposite scaffold after 7... 

    Fabrication and Characterization of Transparent and Flexible Conductive Layers Based on Copper Nanofibers

    , Ph.D. Dissertation Sharif University of Technology Nikzad Alhosseini, Mohammad Javad (Author) ; Sadrnezhad, Khatiboleslam (Supervisor) ; Mahdavi, Mohammad (Supervisor)
    Abstract
    The Transparent electrode (transparent conductive layer) is an essential component of electro-optical devices, especially screens, solar cells and touch screens. Today, most semiconductor oxides such as ITO are used for this purpose, which have problems such as inflexibility, high cost, environmental degradation and ion penetration in organic displays. In this research, the design, simulation and fabrication of a transparent electrode with a network of metal nanowires with low resistance between cross fibers and high aspect ratio during the production stages of polymer mold, metal coating and characterization has been done. Using the reducing atmosphere in the sputtering chamber, the... 

    Preparation and Investigations of Flexible Supercapacitors Using Nanocomposites with Graphene-based Structures and Layered double hydroxide Ni/Co and Manganese Molybdate

    , Ph.D. Dissertation Sharif University of Technology Mehrabi Matin, Bahareh (Author) ; Shahrokhian, Saeed (Supervisor) ; Iraji-zad, Azam (Supervisor)
    Abstract
    In the first part of this research, for the first time, we introduced a flexible high performance graphene-based supercapacitor using silver fiber fabric as the current collector. The silver fiber fabric offers remarkable advantages such as light weight, mechanical flexibility and ease of integration with electronic textiles, which well-suited for wearable energy storage devices. A new hybrid material of graphene-silver fiber fabric (rGO/SFF) was prepared through a facile electrophoretic deposition of graphene and being used as a binder-free flexible supercapacitor electrode. In order to obtain the optimum condition, the effect of deposition time was investigated and a duration time of 10... 

    Developing a New Model to Estimate Flexibility of Thermal and Electrical Storage Units in Active Energy Distribution Systems

    , M.Sc. Thesis Sharif University of Technology Hadi, Mohammad Behzad (Author) ; Moeini Aghtaie, Moein (Supervisor)
    Abstract
    Nowadays, variable generation and renewable energy resources are increasingly penetrating the energy systems to supply the users' demand at the distribution grid. Variable Energy Resources (VER) can provide energy at a lower cost, and they also guarantee cleaner energy. Still, the uncertainty and variability from these resources' output can affect the net-load of the system at each hour. Besides, the issue of energy balance has always been a challenge for the energy distribution networks. A comprehensive way to unravel this problem is to use flexible resources. One of the crucial issues in the flexibility debate is meeting this need by different energy resources. It is always an issue for... 

    Multi-Scale Numerical Modeling of Two Phase Flow over Flexible Surface Micro-Structures

    , Ph.D. Dissertation Sharif University of Technology Heyat Davoudian, Salar (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    The present thesis investigates the micro-droplet dynamics in an inclined channel covered with flexible structures. For this purpose, the DPD (dissipative particle dynamics) method is used to study the behavior of particles present in the flow, including the droplet, the fluid around the droplet, and polymeric structures. This model leads to a more accurate representation of flow hydrodynamics and indicates the way for exploring and understanding complex fluid properties in real flows. The first part of the thesis deals with the dynamics of rising bubbles attached to a vertical wall under different wettability conditions. Even though bubbles rising freely in a liquid have extensively been... 

    Dynamic Modelling and Control of a Double Tethered Towing System for Flexible Non-Functional Satellites Removal

    , M.Sc. Thesis Sharif University of Technology Sajadi Monfared, Ali (Author) ; Assadian, Nima (Supervisor)
    Abstract
    Space debris have increasing importance for space missions. The towing removal scheme is one of the most promising ways for active removal of these debris from LEO orbits. In this approach, an active propelled satellite captures the debris via a space tether and a tethered net which by producing a force opposite to its velocity, it will cause deorbiting and burning the debris in the dense atmosphere. One of the issues with this technique is the danger of tether rupture which for solving that two tethers instead of one can be used. In this research study of active removal of flexible space debris via double tethered towing system has been done. Dynamic modeling has been done with Newton’s and... 

    Reliability-Based Multidisciplinary Design Optimization Under Uncertainty for Reusable Flexible Launch Vehicle Using Genetic Algorithm

    , M.Sc. Thesis Sharif University of Technology Mojibi, Motahareh (Author) ; Fathi Jegarkandi, Mohsen (Supervisor)
    Abstract
    In this research, a Reusable Flexible Launch Vehicle (RFLV) design problem is presented by Multi-Disciplinary Design Optimization (MDO) approach in primary design phase. Trajectory, structure, aerodynamic, aeroelasticity and thermal protection system are considered as involved disciplines in design problem. The study purpose will be to obtain an optimal trajectory which meets all the control and structure limitation while the estimating body skin and thermal protection thicknesses base on structural evaluating in re-entry trajectory is in process. The flexible launch vehicle body is considered as a free-free Bernoulli-Euler beam and D’alembert’s principle addresses inertia force in static... 

    Development of Actuator Disk Method to Simulate Fluid-structure Interaction in Megawatt Wind Turbine Blade Analysis

    , Ph.D. Dissertation Sharif University of Technology Behrouzifar, Ali (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Recent decades have seen a growing demand for high-power wind turbines resulting in turbines with larger blades and the advent of high-megawatt wind turbines. The blades of the megawatt-scale turbines experience more complicated flow phenomena compared to those of the smaller-scale wind turbines. Needless to say, the importance of an accurate solution and detailed analysis of all the parameters, including blades aerodynamic and aeroelastic performance as well as fluid-structure interaction, is more significant for the megawatt-scale turbines compared to smaller-scale turbines. The conventional methods of aerodynamic solutions for the blade, including analytical methods, such as BEMT78 and... 

    Development of the Hale Aircraft's Aeroelastic Model with Very Flexible Wings

    , Ph.D. Dissertation Sharif University of Technology Borhanpanah, Mohammad Reza (Author) ; Dehghani Firouzabadi, Roohallah (Supervisor)
    Abstract
    In this study, a nonlinear aeroelastic model for an aircraft with fully flexible wings is obtained. This aeroelastic model is based on system identification and is created using the beam model for the structure and the three-dimensional panel method for aerodynamic analysis. The model intended for the structure is a nonlinear beam with exact geometry with initial deformation and rigid motion. The model intended for aerodynamics is an unsteady three-dimensional panel method for the airplane’s body, wings, and tail. The desired aeroelasticity model is a reduced-order model based on system identification using the time-domain/frequency-domain aerodynamic response under forced vibrations in the... 

    Dynamic Modeling and Analysis of a Quadrotor-Cable Airborne Wind Energy System

    , M.Sc. Thesis Sharif University of Technology Motaman, Amir Mahdi (Author) ; Saghafi, Fariborz (Supervisor)
    Abstract
    In this research, the dynamic model of a quadrotor-cable airborne wind energy system is presented. These systems have received a lot of attention in recent years and many examples of them have been designed and built. In addition to comprehensive system modeling, cables and quadrotor in the quasi-stable autorotation phase are modeled separately. These models can be used in other fields in addition to wind energy systems. One of the applications of this thick cable model is in the marine industry.In this research, Newton-Euler method has been used for modeling. The cable model is considered and developed as rigid elements with joints with rotary springs and dampers. The quadrotor model is... 

    Fractional Order Sliding Mode Controller (FOSMC) Design for Attitude Control of a Satellite with Coupled Rigid–Flexible Structures Using Fractional Order Transfer Function

    , M.Sc. Thesis Sharif University of Technology Safaei, Reza (Author) ; Fathi Jegarkandi, Mohsen (Supervisor)
    Abstract
    With the development of fractional order calculus and more accurately modeling of physical phenomena, the problem of controlling these systems, by considering the uncertainties in the system, will become necessary and inevitable. In this thesis, the fractional order transfer function model of a satellite with Coupled rigid-flexible structures is used as the reference work of the research. To control this dynamical system, sliding mode control method, which is one of the robust control methods, has been used. It is clear that it is not possible to directly design a sliding mode controller for a transfer function. For this reason, a fractional order pseudo-state space model is first obtained... 

    Control of a Link on Elastic Torsional Support and Experimental Verification

    , M.Sc. Thesis Sharif University of Technology Daryabari, Mohammad (Author) ; Mohammad Navazi, Hossein (Supervisor)
    Abstract
    A simple control system contains at least an actuator, a controlled link, and a foundation. These structures are not ideally rigid, this flexibility can appear willingly or unwillingly in any parts of the system or the connections between them. As a consequence of this flexibility, the movement of the controlled part will fluctuate unintentionally. In this thesis, a control system with rigid controller and flexible torsional base is investigated and controllers are designed and compared to reduce these unwanted vibrations. Finally, by implementing the controllers on the constructed system, the experimental results are obtained and compared with the analytical results.To fabricate the...