Loading...
Search for: fluidic-devices
0.007 seconds
Total 64 records

    Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices

    , Article Analytica Chimica Acta ; Vol. 838, issue , August , 2014 , pp. 64-75 ; ISSN: 00032670 Sadeghi, A ; Amini, Y ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    We outline a comprehensive numerical procedure for modeling of species transport and surface reaction kinetics in electrokinetically actuated microfluidic devices of rectangular cross section. Our results confirm the findings of previous simplified approaches that a concentration wave is created for sufficiently long microreactors. An analytical solution, developed for the wave propagation speed, shows that, when normalizing with the fluid mean velocity, it becomes a function of three parameters comprising the channel aspect ratio, the relative adsorption capacity, and the kinetic equilibrium constant. Our studies also reveal that the reactor geometry idealized as a slit, instead of a... 

    Microfluidic devices as invitro microenvironments for -stem cell culture

    , Article Proceedings of the IASTED International Conference on Biomedical Engineering, BioMed 2014 ; 2014 , pp. 83-88 Shamloo, A ; Abeddoust, M ; Mehboudi, N ; Sharif University of Technology
    Abstract
    Many potential therapies are currently being studied that may promote neural regeneration and guide regenerating axons to form correct connections following injury. It has been shown that adult neurons have some limited regenerative capabilities, and the lack of connection formation between neurons is not an intrinsic inability of these cells to form axons after being damaged, but rather the inhibitory microenvironment of the injured tissue prevents regeneration. In this study, the polarization and chemotaxis of neuronal stem cells (NSC) in response to quantified gradients of nerve growth factor (NGF) was examined. To accomplish this, a microfluidic device was designed and fabricated to... 

    Neuronal cell navigation within a microfluidic device

    , Article Middle East Conference on Biomedical Engineering, MECBME ; 17-20 February , 2014 , pp. 261-264 Shamloo, A ; Sharif University of Technology
    Abstract
    In this study, the polarization and navigation of neuronal cells was studied in response to quantified gradients of nerve growth factor (NGF). To accomplish this, a microfluidic device was designed and fabricated to generate stable concentration gradients of biomolecules in a cell culture chamber within a 3D microenvironment. Numerical simulation was implemented to optimize the device geometry for generating a uniform concentration gradient of NGF which was found to remain stable for multiple hours. Neural Stem/ Progenitor Cell (NSCs) migration and differentiation was studied within this microfluidic device in response to NGF concentration and within a 3D environment of collagen matrix.... 

    Treatment of the small time instability in the finite element analysis of fluid structure interaction problems

    , Article International Journal for Numerical Methods in Fluids ; Volume 71, Issue 6 , 2013 , Pages 756-771 ; 02712091 (ISSN) Afrasiab, H ; Movahhedy, M. R ; Sharif University of Technology
    2013
    Abstract
    In this paper, the fluid-structure interaction problem in mechanical systems in which a high frequency vibrating solid structure interacts with the surrounding fluid flow is considered. Such a situation normally appears in many microelectromechanical systems like a wide variety of microfluidic devices. A different implementation of the residual-based variational multiscale flow method is employed within the arbitrary Lagrangian-Eulerian formulation. The combination of the variational multiscale method with appropriate stabilization parameters is used to handle the so-called small time step instability in the finite element analysis of the fluid part in the coupled fluid-structure interaction... 

    Parallel in-vitro and in-vivo techniques for optimizing cellular microenvironments by implementing biochemical, biomechanical and electromagnetic stimulations

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2012 , Pages 1397-1400 ; 1557170X (ISSN) ; 9781424441198 (ISBN) Shamloo, A ; Heibatollahi, M ; Ghafar Zadeh, E
    2012
    Abstract
    Development of novel engineering techniques that can promote new clinical treatments requires implementing multidisciplinary in-vitro and in-vivo approaches. In this study, we have implemented microfluidic devices and in-vivorat model to study the mechanism of neural stem cell migration and differentiation.These studies can result in the treatment of damages to the neuronal system. In this research, we have shown that by applying appropriate ranges of biochemical and biomechanical factors as well as by exposing the cells to electromagnetic fields, it is possible to improve viability, proliferation, directional migration and differentiation of neural stem cells. The results of this study can... 

    Pumping effect of bubble growth and collapse in microchannels: Thermo-hydraulic modeling

    , Article Scientia Iranica ; Volume 19, Issue 3 , June , 2012 , Pages 431-436 ; 10263098 (ISSN) Sajadi, B ; Saidi, M. H ; Sharif University of Technology
    2012
    Abstract
    In the past two decades, microfluidic systems have become more appealing due to their wide applications in many areas, such as electronics, biotechnology, medicine, etc. Recently, the advantages of using the bubble growth phenomenon as a robust actuator in microfluidic devices have directed research interests towards the investigation of various applications. In this research, a new transient thermo-hydraulic model has been developed for bubble growth in confined volumes. The present model has been used to describe the pumping effect produced by the bubble growth and collapse phenomenon in microchannels. The results show relatively good agreement with experimental data. This study is useful... 

    Fluid-structure interaction analysis in microfluidic devices: A dimensionless finite element approach

    , Article International Journal for Numerical Methods in Fluids ; Volume 68, Issue 9 , 2012 , Pages 1073-1086 ; 02712091 (ISSN) Afrasiab, H ; Movahhedy, M. R ; Assempour, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, the so-called small time-step instability in finite element simulation of the fluid part is considered in fluid-structure interaction (FSI) problems in which a high-frequency vibrating structure interacts with an incompressible fluid. Such a situation is common in many microfluid manipulating devices. A treatment has been proposed that uses the dimensionless set of FSI governing equations in order to scale up the problem time step to a proper level that precludes the potential small time-step instability. Two-dimensional and three-dimensional finite element simulations of a mechanical micropumping device are performed to verify the efficiency of the presented approach. Solid... 

    A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    , Article Journal of Micromechanics and Microengineering ; Volume 26, Issue 1 , November , 2015 ; 09601317 (ISSN) Shamloo, A ; Amirifar, L ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be... 

    Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering

    , Article Journal of Biotechnology ; Volume 212 , 2015 , Pages 71-89 ; 01681656 (ISSN) Shamloo, A ; Mohammadaliha, N ; Mohseni, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    This review aims to propose the integrative implementation of microfluidic devices, biomaterials, and computational methods that can lead to a significant progress in tissue engineering and regenerative medicine researches. Simultaneous implementation of multiple techniques can be very helpful in addressing biological processes. Providing controllable biochemical and biomechanical cues within artificial extracellular matrix similar to in vivo conditions is crucial in tissue engineering and regenerative medicine researches. Microfluidic devices provide precise spatial and temporal control over cell microenvironment. Moreover, generation of accurate and controllable spatial and temporal... 

    High throughput blood plasma separation using a passive PMMA microfluidic device

    , Article Microsystem Technologies ; 2015 ; 09467076 (ISSN) Shamsi, A ; Shamloo, A ; Mohammadaliha, N ; Hajghassem, H ; Mehrabadi, J. F ; Bazzaz, M ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation... 

    Use of the freely-swimming, Serratia marcescens bacteria to enhance mixing in microfluidic systems

    , Article ASME 2009 International Mechanical Engineering Congress and Exposition, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 463-467 ; 9780791843857 (ISBN) Peysepar, M ; Shafii, M. B ; Rasoulian, R ; Jamalifar, H ; Fazeli, M. R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    Mixing has become a challenge in micro-fluidic systems because of the low Reynolds number in micro-channels. The method which is implemented in this paper is to use freely-swimming bacteria to enhance the mixing process. Accordingly, the Serratia marcescens bacteria were used for this matter. The mixing performance of the system is quantified by measuring the diffusion rate of Rhodamine B in a particular section of a channel connected to a chamber with varying Rhodamine B concentration. The concentration of Rhodamine B was measured using the Laser Induced Fluorescence (LIF) technique. The channel is in the form of a pipe and is closed on the extending side. In this paper, it is demonstrated... 

    Toward a comprehensive microextraction/determination unit: A chip silicon rubber polyaniline-based system and its direct coupling with gas chromatography and mass spectrometry

    , Article Journal of Separation Science ; Volume 39, Issue 21 , 2016 , Pages 4227-4233 ; 16159306 (ISSN) Bagheri, H ; Allahdadlalouni, M ; Zamani, C ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    An inexpensive silicon rubber-based chip was constructed by fabricating a triangle-shaped microcanal with a 135 μm width and 234 μm depth by laser ablation technique. The fabricated groove was sealed by a thin glass cover while two pieces of stainless-steel tubing were connected to each side of the canal. Then, a thin polyaniline film was synthesized on the walls of the canal by chemical oxidation using a syringe pump to deliver the relevant reagents. The microfluidic system was eventually connected to a gas chromatography-mass spectrometry. To evaluate the capability of the constructed microfluidic system, it was implemented to the analysis of submilliliter volumes of environmental samples... 

    Designing and modeling a centrifugal microfluidic device to separate target blood cells

    , Article Journal of Micromechanics and Microengineering ; Volume 26, Issue 3 , 2016 ; 09601317 (ISSN) Shamloo, A ; Selahi, Aa ; Madadelahi, M ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of... 

    High throughput blood plasma separation using a passive PMMA microfluidic device

    , Article Microsystem Technologies ; Volume 22, Issue 10 , 2016 , Pages 2447-2454 ; 09467076 (ISSN) Shamsi, A ; Shamloo, A ; Mohammadaliha, N ; Hajghassem, H ; Fallah Mehrabadi, J ; Bazzaz, M ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation... 

    Efficient batch-mode mixing and flow patterns in a microfluidic centrifugal platform: a numerical and experimental study

    , Article Microsystem Technologies ; 2016 , Pages 1-13 ; 09467076 (ISSN) Mortazavi, S. M. A ; Tirandazi, P ; Normandie, M ; Saidi, M. S ; Sharif University of Technology
    Springer Verlag 
    Abstract
    During recent years centrifugal-based microfluidic devices known as Lab-on-a-CD have attracted a lot of attentions. Applications of these CD-based platforms are ubiquitous in numerous biological analyses and chemical syntheses. Mixing of different species in microscale is one of the essential operations in biochemical applications where this seemingly simple task remains a major obstruction. Application of centrifugal force, however, may significantly improve the flow agitation and mixing, especially when it is combined with the Coriolis force which acts perpendicular to centrifugal force. In this study, mixing process in minichambers located on a rotating platform under a periodic... 

    Electrokinetic and aspect ratio effects on secondary flow of viscoelastic fluids in rectangular microchannels

    , Article Microfluidics and Nanofluidics ; Volume 20, Issue 8 , 2016 ; 16134982 (ISSN) Reshadi, M ; Saidi, M. H ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    The secondary flow of PTT fluids in rectangular cross-sectional plane of microchannels under combined effects of electroosmotic and pressure driving forces is the subject of the present study. Employing second-order central finite difference method in a very refined grid network, we investigate the effect of electrokinetic and geometric parameters on the pattern, strength and the average of the secondary flow. In this regard, we try to illustrate the deformations of recirculating vortices due to change in the dimensionless Debye–Hückel and zeta potential parameters as well as channel aspect ratio. We demonstrate that, in the presence of thick electric double layers, significant alteration... 

    Organ-tumor-on-a-chip for chemosensitivity assay: A critical review

    , Article Micromachines ; Volume 7, Issue 8 , 2016 ; 2072666X (ISSN) Kashaninejad, N ; Nikmaneshi, M. R ; Moghadas, H ; Kiyoumarsi Oskouei, A ; Rismanian, M ; Barisam, M ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    MDPI AG  2016
    Abstract
    With a mortality rate over 580,000 per year, cancer is still one of the leading causes of death worldwide. However, the emerging field of microfluidics can potentially shed light on this puzzling disease. Unique characteristics of microfluidic chips (also known as micro-total analysis system) make them excellent candidates for biological applications. The ex vivo approach of tumor-on-a-chip is becoming an indispensable part of personalized medicine and can replace in vivo animal testing as well as conventional in vitro methods. In tumor-on-a-chip, the complex three-dimensional (3D) nature of malignant tumor is co-cultured on a microfluidic chip and high throughput screening tools to evaluate... 

    Numerical optimization and inverse study of a microfluidic device for blood plasma separation

    , Article European Journal of Mechanics, B/Fluids ; Volume 57 , 2016 , Pages 31-39 ; 09977546 (ISSN) Shamloo, A ; Vatankhah, P ; Bijarchi, M. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a passive microfluidic device for continuous real time blood plasma separation has been studied and optimized. A numerical model is used to solve both the fluid flow and the particles confined within it. Red blood cells are considered as particles with diameter of 7μm. A parametric study is performed in order to characterize the effect of different parameters on separation and purity efficiency. In this study, four different variables were introduced to design the microfluidic device for blood plasma separation including: the angle between the daughter channels and the main channel, the widths, the diffuse angle and the number of daughter channels. Results show that the... 

    A comparative study of collagen matrix density effect on endothelial sprout formation using experimental and computational approaches

    , Article Annals of Biomedical Engineering ; Volume 44, Issue 4 , 2016 , Pages 929-941 ; 00906964 (ISSN) Shamloo, A ; Mohammadaliha, N ; Heilshorn, S. C ; Bauer, A. L ; Sharif University of Technology
    Abstract
    A thorough understanding of determining factors in angiogenesis is a necessary step to control the development of new blood vessels. Extracellular matrix density is known to have a significant influence on cellular behaviors and consequently can regulate vessel formation. The utilization of experimental platforms in combination with numerical models can be a powerful method to explore the mechanisms of new capillary sprout formation. In this study, using an integrative method, the interplay between the matrix density and angiogenesis was investigated. Owing the fact that the extracellular matrix density is a global parameter that can affect other parameters such as pore size, stiffness,... 

    Polyamide/titania hollow nanofibers prepared by core–shell electrospinning as a microextractive phase in a fabricated sandwiched format microfluidic device

    , Article Journal of Chromatography A ; Volume 1528 , 2017 , Pages 1-9 ; 00219673 (ISSN) Rezvani, O ; Hashemi Hedeshi, M ; Bagheri, H ; Sharif University of Technology
    Abstract
    In this study, a low–cost microfluidic device from polymethyl methacrylate was fabricated by laser engraving technique. The device is consisted of a central chip unit with an aligned microchannel. Both sides of the engraved microchannel were sandwiched by two synthesized sheets from polyamide/titania (PA/TiO2) hollow nanofibers as extractive phases. The inlet and outlet of the device were connected to the polyether ether ketone tubes, while a peristaltic pump was used to deliver both sample and desorbing solvent through the microchannel. The recorded scanning electron microscopy images from the surface of the synthesized PA/TiO2 nanofibers, exhibit a good degree of homogeneity and porosity...