Loading...
Search for: formability
0.009 seconds
Total 35 records

    Optimum design of middle stage tool geometry and addendum surfaces in sheet metal stamping processes using a new isogeometric-based framework

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 236, Issue 6-7 , 2022 , Pages 741-757 ; 09544054 (ISSN) Shamloofard, M ; Isazadeh, A. R ; Shirin, M. B ; Assempour, A ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    An efficient isogeometric-based framework is presented to integrate optimum design and formability analysis of sheet metal forming processes. To assess the quality of the formed parts, several objective functions such as fracture, wrinkling, thickness variation, and stretching are studied. In this framework, geometric parameters of addendum surfaces and middle tools are considered as design variables, the objective functions are calculated using the recently developed one-step and multi-step inverse isogeometric methods, and the optimum design variables are obtained using the genetic global optimization algorithm. The major advantage of employing the inverse methods is to analyze the... 

    Prediction of the bending and out-of-plane loading effects on formability response of the steel sheets

    , Article Archives of Civil and Mechanical Engineering ; Volume 21, Issue 2 , 2021 ; 16449665 (ISSN) Peng, D ; Chen, S ; Darabi, R ; Ghabussi, A ; Habibi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Failure in sheet metal forming can occur by necking, fracture or wrinkling. By using a forming limit diagram (FLD) as a powerful tool to prevent sheets metal failures in the forming process, provides parameters controlling throughout forming. There are different developed methods for predicting FLDs, which estimate sheet metal forming strains limits. Assessment of FLD estimation reveals that there is a dependency between the effect of several factors containing normal stress, shear stress, sheet thickness, mechanical properties, metallurgical properties, yield function, strain path, and bending with formability. In this research, the effects of bending via two finite element models are... 

    Optimum design of middle stage tool geometry and addendum surfaces in sheet metal stamping processes using a new isogeometric-based framework

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; 2021 ; 09544054 (ISSN) Shamloofard, M ; Isazadeh, A. R ; Bostan Shirin, M ; Assempour, A ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    An efficient isogeometric-based framework is presented to integrate optimum design and formability analysis of sheet metal forming processes. To assess the quality of the formed parts, several objective functions such as fracture, wrinkling, thickness variation, and stretching are studied. In this framework, geometric parameters of addendum surfaces and middle tools are considered as design variables, the objective functions are calculated using the recently developed one-step and multi-step inverse isogeometric methods, and the optimum design variables are obtained using the genetic global optimization algorithm. The major advantage of employing the inverse methods is to analyze the... 

    Simulation of sheet metal forming processes by presenting a bending-dependent inverse isogeometric methodology

    , Article International Journal of Advanced Manufacturing Technology ; Volume 112, Issue 5-6 , 2021 , Pages 1389-1408 ; 02683768 (ISSN) Shamloofard, M ; Assempour, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Recently, eliminating the gap between design and formability analysis of sheet metal parts has been studied to simulate sheet metal stamping processes. In this regard, a transfer-based inverse isogeometric formulation has been proposed. This method has various advantages such as solving the governing equations in two-dimensional networks without any concern about the convergence; however, it neglects the bending effect which is a major contributor in die/punch profile radii. The present work aims to consider the bending effects by introducing a bending-dependent inverse isogeometric formulation. The developed model deals with the minimization of potential energy, deformation theory of... 

    Formability of tri-layered IF240/AZ31/IF240 composite with strong bonding: experimental and finite element modeling

    , Article Journal of Materials Engineering and Performance ; Volume 30, Issue 11 , 2021 , Pages 8402-8411 ; 10599495 (ISSN) Abedi, R ; Akbarzadeh, A ; Hadiyan, B ; Hashemi, R ; Sharif University of Technology
    Springer  2021
    Abstract
    In this work, the formability of a hybrid material of Interstitial-Free 240 (IF240) steel and AZ31 magnesium alloy as IF240/AZ31/IF240 tri-layered sheets was investigated. For this purpose, the bonding feasibility of the high-formability IF240 steel and low-formability AZ31 sheets was first assessed. Then, the hot formability behavior of the manufactured laminated composite was evaluated. The rolling of the preheated samples established the layer bonding. The bonding strength was determined using the shear punch test. The texture and its effects on the forming behavior were studied using the x-ray Goniometry method. Nakazima dome tests were employed at ambient and elevated temperatures to... 

    Formability of Tri-layered IF240/AZ31/IF240 composite with strong bonding: Experimental and finite element modeling

    , Article Journal of Materials Engineering and Performance ; Volume 30, Issue 11 , 2021 , Pages 8402-8411 ; 10599495 (ISSN) Abedi, R ; Akbarzadeh, A ; Hadiyan, B ; Hashemi, R ; Sharif University of Technology
    Springer  2021
    Abstract
    In this work, the formability of a hybrid material of Interstitial-Free 240 (IF240) steel and AZ31 magnesium alloy as IF240/AZ31/IF240 tri-layered sheets was investigated. For this purpose, the bonding feasibility of the high-formability IF240 steel and low-formability AZ31 sheets was first assessed. Then, the hot formability behavior of the manufactured laminated composite was evaluated. The rolling of the preheated samples established the layer bonding. The bonding strength was determined using the shear punch test. The texture and its effects on the forming behavior were studied using the x-ray Goniometry method. Nakazima dome tests were employed at ambient and elevated temperatures to... 

    An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formability

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 235, Issue 8 , 2021 , Pages 1937-1951 ; 14644207 (ISSN) Habibi, M ; Darabi, R ; Sa, J. C. D ; Reis, A ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Experimental and numerical study regarding the uniaxial tensile test and the forming limit diagram are addressed in this paper for AL2024 with the face-centered cube structure. First, representation of a grain structure can be obtained directly by mapping metallographic observations via scanning electron microscopy approach. Artificial grain microstructures produced by Voronoi Tessellation method are employed in the model using VGRAIN software. By resorting to the finite element software (ABAQUS) capabilities, the constitutive equations of the crystal plasticity were utilized and implemented as a user subroutine material UMAT code. The hardening parameters were calibrated by a trial and... 

    A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip

    , Article Analytica Chimica Acta ; Volume 1186 , 2021 ; 00032670 (ISSN) Hakim, M ; Khorasheh, F ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Isolation and characterization of circulating tumor cells (CTCs) found in blood samples of cancer patients have been considered as a reliable source for cancer prognosis and diagnosis. A new continuous microfluidic platform has been designed in this investigation for simultaneous capture and characterization of CTCs based on their deformability. The deformability-based chip (D-Chip) consists of two sections of separation and characterization where slanted weirs with a gap of 7 μm were considered. Although sometimes CTCs and leukocytes have the same size, the deformability differs in such a way that can be exploited for enrichment purposes. MCF7 and MDA-MB-231 cell lines were used for the... 

    Effects of microstructural morphology on formability, strain localization, and damage of ferrite-pearlite steels: experimental and micromechanical approaches

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 52, Issue 2 , January , 2021 , Pages 711-725 ; 10735623 (ISSN) Isavand, S ; Assempour, A ; Sharif University of Technology
    Springer  2021
    Abstract
    This paper attempts to predict how the microstructural features and mechanical properties of the individual constituents affect the deformation behavior and formability of ferrite-pearlite steels under quasi-static loading at room temperature. For this purpose, finite element simulations using representative volume elements (RVEs) based on the real microstructures were implemented to model the flow behavior of the ferrite-pearlite steels with various microstructural morphologies (non-banded and banded). The homogenized flow curves obtained from the RVEs subjected to periodic boundary conditions together with displacement boundary conditions were validated with the experimental results of the... 

    Some improvements on the one-step inverse isogeometric analysis by proposing a multi-step inverse isogeometric methodology in sheet metal stamping processes

    , Article Applied Mathematical Modelling ; Volume 91 , March , 2021 , Pages 476-492 ; 0307904X (ISSN) Isazadeh, A. R ; Shamloofard, M ; Assempour, A ; Sharif University of Technology
    Elsevier Inc  2021
    Abstract
    Recently, isogeometric methodology has been successfully implemented in one-step inverse analysis of sheet metal stamping processes. However, these models are not capable of analyzing forming processes which require severe deformation and/or several forming stages. This paper presents a multi-step inverse isogeometric methodology to enhance the precision of one-step models in predictions of the initial blank, strain distributions, and drawability of the formed parts. This methodology deals with the minimization of potential energy, deformation theory of plasticity, and considering membrane elements. The presented methodology utilizes the NURBS basis functions to create the final, middle, and... 

    Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels

    , Article Mechanics Based Design of Structures and Machines ; Volume 48, Issue 5 , 2020 , Pages 525-541 Alipour, M ; Torabi, M. A ; Sareban, M ; Lashini, H ; Sadeghi, E ; Fazaeli, A ; Habibi, M ; Hashemi, R ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this article, we investigated the effect of martensite morphology on the mechanical properties and formability of dual phase steels. At first, three heat treatment cycles were subjected to a low-carbon steel to produce ferrite–martensite microstructure with martensite morphology of blocky-shaped, continuous, and fibrous. Tensile tests were then carried out so as to study mechanical properties, particularly the strength and strain hardening behavior of dual phase steels. In order to study the formability of dual phase samples, Forming Limit Diagram was obtained experimentally and numerically. Experimental forming limit diagram was obtained using Nakazima forming test, while Finite Element... 

    Weld orientation effects on the formability of tailor welded thin steel sheets

    , Article Thin-Walled Structures ; Volume 149 , April , 2020 Moayedi, H ; Darabi, R ; Ghabussi, A ; Habibi, M ; Foong, L. K ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Tailored welded blanks (TWBs) technology can give the important possibilities to obtain components in the automobile industry. Friction stir welding (FSW) is a joining approach, which can adhere parts well with desired properties in weld zone. In this article, the main aim is investigation the effect of weld zone orientation on forming limit diagram (FLD) of the TWBs using experimental and finite element model. Three TWBs are produced FSW with three different orientations of weld zones including 00, 450 and 900 against major stress direction. The microstructure of the weld zones is divided and then observed via metallography procedures. Tensile tests are carried out to determine the... 

    Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Alipour, M ; Torabi, M. A ; Sareban, M ; Lashini, H ; Sadeghi, E ; Fazaeli, A ; Habibi, M ; Hashemi, R ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this article, we investigated the effect of martensite morphology on the mechanical properties and formability of dual phase steels. At first, three heat treatment cycles were subjected to a low-carbon steel to produce ferrite–martensite microstructure with martensite morphology of blocky-shaped, continuous, and fibrous. Tensile tests were then carried out so as to study mechanical properties, particularly the strength and strain hardening behavior of dual phase steels. In order to study the formability of dual phase samples, Forming Limit Diagram was obtained experimentally and numerically. Experimental forming limit diagram was obtained using Nakazima forming test, while Finite Element... 

    Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding

    , Article Journal of Manufacturing Processes ; Volume 31 , 2018 , Pages 310-323 ; 15266125 (ISSN) Habibi, M ; Hashemi, R ; Fallah Tafti, M ; Assempour, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, the mechanical properties, formability and forming limit diagrams (FLDs) of the tailor-welded blanks (TWBs) produced by friction stir welding (FSW) were analyzed experimentally. At first, the suitable FSW parameters were achieved. The formability and FLDs of TWBs were evaluated for sheets with the same or different thicknesses and compared to the base metal sheet. This study was performed on low carbon steel (St14) sheets with a lot of applications in automobile industries. The welded zone properties were evaluated by some experiments. The tensile test, micro hardness testing, and metallographic studies were done. The effect of welding seam directions on formability and FLD... 

    Experimental investigation and crystal plasticity-based prediction of AA1050 sheet formability

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 231, Issue 8 , 2017 , Pages 1341-1349 ; 09544054 (ISSN) Hajian, M ; Assempour, A ; Akbarzadeh, A ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    This article presents a crystal plasticity methodology to evaluate the AA1050 sheet formability. In order to determine the orientation distribution of the crystals, initial texture of the material is measured through X-ray diffraction technique. Also, the stress-strain behavior of the material is determined by performing tensile test. In order to simulate the path-dependent crystal plasticity behavior of body-centered cubic crystal structures, a UMAT subroutine that employs the rate-dependent crystal plasticity model along with the power law hardening was developed previously by the authors and linked to the finite element software ABAQUS. This subroutine was further developed to simulate... 

    Investigation into the effects of weld zone and geometric discontinuity on the formability reduction of tailor welded blanks

    , Article Computational Materials Science ; Volume 59 , 2012 , Pages 158-164 ; 09270256 (ISSN) Abbasi, M ; Ketabchi, M ; Ramazani, A ; Abbasi, M ; Prahl, U ; Sharif University of Technology
    2012
    Abstract
    Numerous advantages of application of tailor welded blanks (TWBs) in automobile industry, namely reduction of weight, fuel consumption and air pollution, have made the manufacturers eager to investigate in this field. On the other hand, while experiments generally provide valuable information in regard with mechanical behaviors, but utilization of simulation methods has extended vastly due to time and cost saving issues. One challenging issue in numerically analyzing the forming behavior of transversely welded TWBs, welded by laser welding methods, has been the presence of weld zone. While some researchers believe that during simulation, the weld zone can be neglected due to its minority and... 

    An investigation to effective parameters on the damage of dual phase steels by acoustic emission using energy ratio

    , Article World Academy of Science, Engineering and Technology ; Volume 46 , 2010 , Pages 638-643 ; 2010376X (ISSN) Fallahi, A ; Khamedi, R ; Sharif University of Technology
    2010
    Abstract
    Dual phase steels (DPS)s have a microstructure consisting of a hard second phase called Martensite in the soft Ferrite matrix. In recent years, there has been interest in dual-phase steels, because the application of these materials has made significant usage; particularly in the automotive sector Composite microstructure of (DPS)s exhibit interesting characteristic mechanical properties such as continuous yielding, low yield stress to tensile strength ratios(YS/UTS), and relatively high formability; which offer advantages compared with conventional high strength low alloy steels(HSLAS). The research dealt with the characterization of damage in (DPS)s. In this study by review the mechanisms... 

    A study on sheet formability by a stretch-forming process using assumed strain FEM

    , Article Journal of Engineering Mathematics ; Volume 65, Issue 4 , 2009 , Pages 311-324 ; 00220833 (ISSN) Narooei, K ; Karimi Taheri, A ; Sharif University of Technology
    Springer Netherlands  2009
    Abstract
    The effects of sheet thickness and frictional condition between the punch and sheet on formability is predicted and compared with the experimental results of the Erichsen test as a stretch-forming process. The material and geometrical nonlinearity are considered. A hypoelastic-plastic model is used and strain-field stabilization is taken into account using the Assumed Strain Finite-Element Method. By considering the contact problem and applying the nonlinear finite-element method, the force and dome height for aluminum and steel sheets are computed and compared with the experimental results. The Oyane criterion is used to access the formability of the sheet. A good agreement was found... 

    Experimental and analytical studies on the prediction of forming limit diagrams

    , Article Computational Materials Science ; Volume 44, Issue 4 , 2009 , Pages 1252-1257 ; 09270256 (ISSN) Ahmadi, S ; Eivani, A. R ; Akbarzadeh, A ; Sharif University of Technology
    2009
    Abstract
    Metal forming processes are widely used in industrial productions, automobile bodies, food industries, oil refineries, and liquid and gas transmission systems. Analyzing these processes is very important to reduce wastes and optimize the processes. Study of some main factors such as physical and mechanical properties of material and its formability, die geometry, die material, lubrication and pressing speed has been the topic of many research projects. In this paper, forming limit diagrams (FLDs) for LC and ULC steels and the effect of different parameters like the work-hardening exponent, n, and the plastic strain ratio, r, on these diagrams have been evaluated and simulated using... 

    An experimental and theoretical study on the prediction of forming limit diagrams using new BBC yield criteria and M-K analysis

    , Article Computational Materials Science ; Volume 44, Issue 4 , 2009 , Pages 1272-1280 ; 09270256 (ISSN) Ahmadi, S ; Eivani, A. R ; Akbarzadeh, A ; Sharif University of Technology
    2009
    Abstract
    In the present paper, a comprehensive study on the prediction of forming limit diagrams (FLDs) for an AA3003-O aluminium alloy is developed theoretically and experimentally. For obtaining the experimental FLDs, an out-of-plane formability test was performed based on the technique proposed by Ozturk and Lee [F. Ozturk, D. Lee, J. Mater. Process. Technol. 170 (2005) 247-253]. The classical Marciniak-Kuczynski (M-K) model and some new yield criteria are utilized to simulate the necking phenomenon and calculate the limit strains theoretically. The employed yield functions are: the BBC2000, BBC2002, and BBC2003 yield criteria proposed by Banabic et al. [D. Banabic, S.D. Comsa, T. Balan, in:...