Loading...
Search for: glassy-carbon
0.008 seconds
Total 65 records

    Design and Fabrication of Advanced Electrode Materials Based on Metal-organic Frameworks and Double Layered Hydroxides Using Hollow Copper Hydroxide Nanotubes Scaffold; Application to Nonenzymatic Glucose Sensor

    , M.Sc. Thesis Sharif University of Technology Khaki Sanati, Elnaz (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    One of the remarkable subject in advanced electrochemistry is, design and architecting new advanced materials with new electrochemical capabilities. One of the notable capabilities is electrocatalysis. Extensive researches are carrying out into the design and preparation of electrocatalyst materials to take advantage of these materials in fabrication of electrochemical sensors and storage/conversion devices. In this field nonoporous materials attracted a lot of attentions due to their unique features. In order to make use of the nanoporous materials as the electrocatalysts, these materials must be fabricated into continuous supported thin films on the electrode surface, which is the... 

    Design and Fabrication Nanocomposite Modified Electrode Materials Based on Transition Metal Phosphide Using Copper Hydroxide Nanotubes as a Catalytic Substrate for Glucose Sensing in Non-Enzymatic Sensors

    , M.Sc. Thesis Sharif University of Technology Kazemi Abatari, Zeynab (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In this study, transition metal phosphide, with a high accessible surface and abundant electroactive centers, was used as an electrocatalyst to fabrication an electrochemical sensor of Gloucose. The direct growth of thin film of nanocomposite can be considered as an efficient method to modify the electrode surface, and the application of these modified electrodes as electrochemical sensors. nanocomposite of transition metal phosphide (CuCoP) were directly grown on Cu(OH)2 nanotubes (as-prepared on GCE) in order to design hierarchical core-shell nanostructure with using efficient, inexpensive and fast method. Here, Cu(OH)2 nanotubes not only served as substrate, but also steer the CuCoP to... 

    Constructing and Investigation of the Electrochemical Behavior of Nanocomposite of Conducting Polymers on Copper Hydroxide Nanotubes; Application to Determination of Glucose

    , M.Sc. Thesis Sharif University of Technology Manafi, Reza (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    A novel amperometric non-enzymatic glucose (NEG) sensor is designed by a facile preparation method. It is made by electrodeposition of Cu clusters and converting them to Cu(OH)2 nanotubes (Cu(OH)2NTs) arrays along with thin-film electro-polymerized of spindle-shaped polypyrrole (PPy@Cu(OH)2NTs), which have been doped by using sodium Benzene-1,3- disulfonate as an anion dopant. The electrochemical performance of the modified electrode toward glucose detection is investigated by various electrochemical methods. Under the optimized conditions, a significant electrochemical response improvement is observed toward the electro-oxidation of glucose on the surface of PPy@Cu(OH)2NTs electrode... 

    Preparation and Investigation of the Electrochemical Behavior of Sensors Based on Glassy Carbon Electrode Modified with Various Carbon Nanostructures Decorated by Some of Metal Nanoparticlesfor Determination of Ceftizoxime

    , M.Sc. Thesis Sharif University of Technology Ranjbar, Saba (Author) ; Shahrokhian, Saeed (Supervisor) ; Masoumeh Ghalkhani (Co-Advisor)
    Abstract
    In the recent years, sensors and biosensors attracts much attentions as a suitable devices in analytical chemistry. In this meantime carbon nanostructures and metal nanoparticles act as a good choice owing to their unique properties such as high electrical conductivity andmechanical and chemical stability in modification of the surface of sensors and biosensors. Because of importance of analysis the trace amounts of pharmaceutical and biological compounds, in this studies the surface of glassy carbon electrode was modified with some carbon nanostructures and metal nanoparticles for electrochemical investigation and determination of pharmaceutical and clinical compounds.In the first work, a... 

    Preparation and Investigation of the Electrochemical of the Glassy Carbon Electrode Modified by Nanocellulose/Carbon Nanoparticle: Application to Pharmaceutical Determinations

    , M.Sc. Thesis Sharif University of Technology Balotf, Hamed (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, a novel electrochemical sensor for clonazepam (CLNP) was fabricated based on immobilizing cellulose nanofibers /carbon nanoparticles (CNFs/CNPs) nanocomposite on glassy carbon electrode (CNFs/CNPs/GCE). The combination of CNFs and CNPs produced a novel kind of structurally uniform and electro-analytically active nanocomposite. The surface morphology of CNFs/CNPs layer deposited onto glassy carbon electrode was characterized by scanning electron microscopy. The results of the voltammetric investigations showed a considerable enhancement in the cathodic peak current of CLNP (up to 60 times) on the surface of CNFs/CNPs/GCE relative to the bare GCE. Under the optimal... 

    Preparation and Study of the Electrochemical Ptal Oxide Particles/Carbon Nanoparticles: Application to Pharmaceutical Determinations

    , M.Sc. Thesis Sharif University of Technology Kohansal, Razieh (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first work, a novel voltammetric biosensor basedon TiO2-nafion-carbon nanoparticles modified glassy carbon electrode (TiO2/N/CNP/GCE) was developed for the determination of DBA. The electrochemical performance of the modified electrode was investigated by means of cyclic voltammetry (CV), different pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. Characterization of the surface morphology and properties of TiO2/N/CNP was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Effective experimental variables, such as scan rate, pH of the supporting electrolyte, drop size of the cast modifier suspension and accumulation... 

    Preparation of Nanocomposites Consisting of Nickel Oxide Nanostructures Grown on Hollow Carbon Nanospheres and Evaluation of their Ability for Electrooxidation of Hydrazine Hydrate

    , M.Sc. Thesis Sharif University of Technology Taghaddosi, Sanaz (Author) ; Shahrokhian Dehkordi, Saeed (Supervisor)
    Abstract
    In the present work, nanocomposites consisting of nickel oxide nanostructures and a hollow carbon substrate were used to modify a glassy carbon electrode's surface for the electrooxidation of hydrazine hydrate. For this purpose, hollow carbon nanospheres were first synthesized using aniline and pyrrole copolymerization process without any template needing. The hollow carbon nanospheres prepared by this method have outstanding features such as high specific surface area and good stability. On the other hand, they did not require toxic and environmentally harmful solvents to remove the template. In this study, after preparing hollow carbon nanospheres as a suitable substrate, different... 

    Fabrication of Applied Electrode Materials based on Metal-Organic Frameworks to Design Non-Enzymatic Electrochemical Sensing Platforms for Measuring of Glucose in Physiological Samples

    , M.Sc. Thesis Sharif University of Technology Ezzati, Milad (Author) ; Shahrokhian Dehkordi, Saeed (Supervisor)
    Abstract
    In the first work, the method of direct growth was used to grew MOFs based on cobalt, as electroactive centers, for preparing electrochemical sensors for the determination of glucose. In comparison to most of the electrochemical sensing platforms based on MOFs for determining glucose, which suffer from some disadvantages like time-consuming synthesis procedures and using hazardous organic solvents, the proposed in situ growth method is much faster and no need to toxic organic solvents. Herein, cobalt-based MOFs were grown on the surface of the reduced graphene oxide modified glassy carbon electrode by the direct and rapid conversion of cobalt hydroxide nanosheets intermediates. The... 

    Fabrication of Nanocomposite Modified Materials Based on Bi-Metalic Transition Metal Sulfide Using Copper (I) Oxide Nanospheres as a Catalytic Substrate for Designation of Amperometric Non-Enzymatic Hydrazine and Hydrogen peroxide Sensors

    , M.Sc. Thesis Sharif University of Technology Darvishmehr, Zahra (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In this study, transition metal sulfide, with a high accessible surface and abundant electroactive centers, was used as an electrocatalyst to fabrication an electrochemical sensor of hydrazine and hydrogen peroxide. the direct growth of thin film of nanocomposite can be considered as an efficient method to modify the electrode surface, and the application of these modified electrodes as electrochemical sensors. the cobalt iron sulfide (CoFeS) nanosheets were directly grown on Cu2O nanospheres in order to design hierarchical nanocomposite by using efficient, inexpensive and fast method. Here, Cu2O nanospheres not only served as substrate, but also steer the CoFeS to attach on nanospheres... 

    Fabrication of Composite Electrode Materials Based on Bi-Metalic Metal-Organic Frameworks for Designation of Amperometric Non-Enzymatic Glucose Sensors

    , M.Sc. Thesis Sharif University of Technology Ataei Kachouei, Matin (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the present study, the method of direct growth was used to grew bi-metalic MOFs based on cobalt and zinc, as electroactive centers, for preparing electrochemical sensors for the determination of glucose. In comparison to most of the electrochemical sensing platforms based on MOFs for determining glucose, which suffer from some disadvantages like time-consuming synthesis procedures and using hazardous organic solvents, the proposed in-situ growth method is much faster and without any need to toxic organic solvents. Herein, cobalt and zinc-based MOFs were grown on the surface of glassy carbon electrode by the direct and rapid conversion of layered double hydroxide nanosheets intermediates.... 

    Chemical Modification of Glassy Carbon Electrode by Carbon Nanostructures/Conductive Polymers Composites and Its Application in The Study of Electrochemical Behaviour and Determination of Salbutamol and Isoprenaline

    , M.Sc. Thesis Sharif University of Technology Panahi, Saba (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part of thesis, the electropolymerization of pyrrole was performed in the presence of new coccine (NC) as a dopant anion on the surface of the electrode precoated with SWCNT. The modified electrode was used to study the voltammetric response of salbutamol (SAL). The results showed a remarkable increase in the anodic peak current of SAL in comparison to the bare GCE. The surface morphology PPY/CNT/GCE was thoroughly characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV) techniques. Under the optimized analysis conditions, the modified electrode showed two linear dynamic ranges of 0.02 – 0.1 μM and 0.1-10 μM with a detection limit of 6 nM for the... 

    Chemical modification of the electrode surface by composites of Ag Nanoparticle Decorated on Multi Walled Carbon Nanotube; Application to Investigate the Electrochemical behavior and Determination of Risperidone and Isoxsuprine drugs

    , M.Sc. Thesis Sharif University of Technology Hafezi Kahnamoui, Mohammad (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    Nowadays, electrochemical sensors have numerous benefits, including simplicity,low cost, high selectivity and high sensitivity as an efficient and useful tool in various fields such as the environment, disease diagnostics, medical and medical surveillance, and Anti-terrorism security systems have become the focus of attention in the field of analytical measurements. In the meantime, carbon nanostructures and metal nanoparticles have been considered as suitable alternatives in order to improve their surface properties due to their unique electronic properties and mechanical and chemical stability. Since the determination of trace amounts of pharmaceutical and biological compounds is very... 

    Ultra-sensitive detection of leukemia by graphene

    , Article Nanoscale ; Vol. 6, issue. 24 , Dec , 2014 , p. 14810-14819 Akhavan, O ; Ghaderi, E ; Hashemi, E ; Rahighi, R ; Sharif Universit of Technology
    Abstract
    Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ∼20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ∼10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks... 

    Toward single-DNA electrochemical biosensing by graphene nanowalls

    , Article ACS Nano ; Volume 6, Issue 4 , March , 2012 , Pages 2904-2916 ; 19360851 (ISSN) Akhavan, O ; Ghaderi, E ; Rahighi, R ; Sharif University of Technology
    2012
    Abstract
    Graphene oxide nanowalls with extremely sharp edges and preferred vertical orientation were deposited on a graphite electrode by using electrophoretic deposition in an Mg 2+-GO electrolyte. Using differential pulse voltammetry (DPV), reduced graphene nanowalls (RGNWs) were applied for the first time, in developing an ultra-high-resolution electrochemical biosensor for detection of the four bases of DNA (G, A, T, and C) by monitoring the oxidation signals of the individual nucleotide bases. The extremely enhanced electrochemical reactivity of the four free bases of DNA, single-stranded DNA, and double-stranded DNA (dsDNA) at the surface of the RGNW electrode was compared to electrochemical... 

    Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    , Article Electrochimica Acta ; Volume 55, Issue 8 , 2010 , Pages 2752-2759 ; 00134686 (ISSN) Ghorbani Bidkorbeh, F ; Shahrokhian, S ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    2010
    Abstract
    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds... 

    Silver nanowires immobilized on gold-modified glassy carbon electrode for electrochemical quantification of atorvastatin

    , Article Journal of Electroanalytical Chemistry ; Volume 876 , November , 2020 Naseri, A ; Hormozi Nezhad, M. R ; Shahrokhian, S ; Asadian, E ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Development of simple yet precise sensing platforms for rapid determination of biological species and drugs is of paramount importance, not only for analysis of pharmaceutical formulations during the production stage, but also in clinical practices and medical diagnosis. In the present research, we report on the electrochemical determination of atorvastatin (ATOR) by using silver nanowires/gold-modified glassy carbon electrode (Ag NWs/Au/GCE). The modified electrode was constructed through a two-step procedure in which narrow silver nanowires synthesized via a polyol method are drop casted on a pre-modified GCE with electrodeposited gold particles. The results of XRD analysis indicated the... 

    Sensitive voltammetric detection of melatonin in pharmaceutical products by highly conductive porous graphene-gold composites

    , Article ACS Sustainable Chemistry and Engineering ; 2020 Rahmati, R ; Hemmati, A ; Mohammadi, R ; Hatamie, A ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    This work presents a novel melatonin sensor based on unfunctionalized macroporous graphene networks decorated with gold nanoparticles for the differential pulse voltammetric detection of melatonin in pharmaceutical products. Highly porous graphene structures were prepared by metallic template-assisted chemical vapor deposition, and their active surface area and electrocatalytic activity were improved by electrochemical deposition of gold nanoparticles (50-250 nm) on their struts. The graphene-gold electrodes present a highly sensitive performance toward electro-oxidation of melatonin with a wide linear range of 0.05-50 μM, a low detection limit of 0.0082 μM (3σ/m), and a significant... 

    Pd-Au nanoparticle decorated carbon nanotube as a sensing layer on the surface of glassy carbon electrode for electrochemical determination of ceftazidime

    , Article Materials Science and Engineering C ; Vol. 34, issue. 1 , 2014 , pp. 318-325 ; ISSN: 09284931 Shahrokhian, S ; Salimian, R ; Rastgar, S ; Sharif University of Technology
    Abstract
    A simple electrodeposition method is employed to construct a thin film modifier of palladium-gold nanoparticles (Pd-AuNPs) decorated multi-walled carbon nanotube (MWCNT) on the surface of glassy carbon electrode (GCE). Morphology and property of Pd-AuNPs-MWCNT have been examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Electrochemical performance of Pd-AuNPs-MWCNT/GCE for detection of ceftazidime (CFZ) has been investigated by cyclic voltammetry (CV). This nanostructured film modified electrode effectively exhibited enhanced properties for detection of ceftazidime (CFZ). The effects of various experimental variables such as, the amount of casted MWCNT,... 

    Ni(II) 1D-coordination polymer/C 60 -modified glassy carbon electrode as a highly sensitive non-enzymatic glucose electrochemical sensor

    , Article Applied Surface Science ; Volume 478 , 2019 , Pages 361-372 ; 01694332 (ISSN) Shahhoseini, L ; Mohammadi, R ; Ghanbari, B ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    A new non-enzymatic sensor for glucose is prepared by using of Ni(II)-one dimensional coordination polymer (Ni(II)-Cp) and C 60 . The Ni(II)-Cp prepared by slow diffusion and evaporation of two solution layers of NiCl 2 and diaza-macrocycle bearing two pyridine side arms (as the reported tecton) in DMF. The Ni(II)-Cp was characterized by powder x-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) as well as Fourier transform infrared spectroscopy (FT-IR). C 60 as modified was added to Ni(II)-Cp for improving the electrical and chemical stability of the composite. The newly assembled Ni(II)-Cp/C 60 also coated on glassy carbon electrode (GC) to... 

    Nanocomposite with promoted electrocatalytic behavior based on bimetallic pd-ni nanoparticles, manganese dioxide, and reduced graphene oxide for efficient electrooxidation of ethanol

    , Article Journal of Physical Chemistry C ; Volume 122, Issue 18 , 2018 , Pages 9783-9794 ; 19327447 (ISSN) Rezaee, S ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    In this work, a nanocomposite containing manganese dioxide (MnO2) modified reduced graphene oxide (rGO) supported bimetallic palladium-nickel (Pd-Ni) catalyst is prepared by electrodeposition method. The nanocomposite modifier film is prepared by forming a thin layer of graphene oxide (GO) via drop-casting of GO nanosheet dispersion on glassy carbon electrode (GCE), followed by electrochemical reduction of the film to provide rGO/GCE. Then, a two-step potential procedure is applied to deposit MnO2 nanoparticles on rGO/GCE. At the optimum deposition conditions, MnO2 nanoparticles with a thickness of 30-50 nm homogeneously covered the rGO surface (MnO2/rGO/GCE). Finally, the bimetallic Pd-Ni...