Loading...
Search for: interatomic-potential
0.006 seconds
Total 33 records

    Introducing structural approximation method for modeling nanostructures

    , Article Journal of Computational and Theoretical Nanoscience ; Vol. 7, Issue 2 , 2010 , p. 423-428 ; ISSN: 15461955 Momeni, K ; Alasty, A ; Sharif University of Technology
    Abstract
    In this work a new method for analyzing nanostructured materials has been proposed to accelerate the simulations for solid crystalline materials. The proposed Structural Approximation Method (SAM) is based on Molecular Dynamics (MD) and the accuracy of the results can also be improved in a systematic manner by sacrificing the simulation speed. In this method a virtual material is used instead of the real one, which has less number of atoms and therefore fewer degrees of freedom, compared to the real material. The number of differential equations that must be integrated in order to specify the state of the system will decrease significantly, and the simulation speed increases. To generalize... 

    Dynamic and static fracture analyses of graphene sheets and carbon nanotubes

    , Article Composite Structures ; Volume 94, Issue 8 , 2012 , Pages 2365-2372 ; 02638223 (ISSN) Niaki, S. A ; Mianroodi, J. R ; Sadeghi, M ; Naghdabadi, R ; Sharif University of Technology
    2012
    Abstract
    Dynamic and static fracture properties of Graphene Sheets (GSs) and Carbon nanotubes (CNTs) with different sizes are investigated based on an empirical inter-atomic potential function that can simulate nonlinear large deflections of nanostructures. Dynamic fracture of GSs and CNTs are studied based on wave propagation analysis in these nanostructures in a wide range of strain-rates. It is shown that wave propagation velocity is independent from strain-rate while dependent on the nanostructure size and approaches to 2.2×10 4m/s for long GSs. Also, fracture strain shows extensive changes versus strain-rate, which has not been reported before. Fracture stress is determined as 115GPa for GSs and... 

    Calculation of the additional constants for fcc materials in second strain gradient elasticity: Behavior of a nano-size bernoulli-euler beam with surface effects

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 79, Issue 2 , 2012 ; 00218936 (ISSN) Shodja, H. M ; Ahmadpoor, F ; Tehranchi, A ; Sharif University of Technology
    2012
    Abstract
    In addition to enhancement of the results near the point of application of a concentrated load in the vicinity of nano-size defects, capturing surface effects in small structures, in the framework of second strain gradient elasticity is of particular interest. In this framework, sixteen additional material constants are revealed, incorporating the role of atomic structures of the elastic solid. In this work, the analytical formulations of these constants corresponding to fee metals are given in terms of the parameters of Sutton-Chen interatomic potential function. The constants for ten fcc metals are computed and tabulized. Moreover, the exact closed-form solution of the bending of a... 

    Temperature-dependent multi-scale modeling of surface effects on nano-materials

    , Article Mechanics of Materials ; Volume 46 , 2012 , Pages 94-112 ; 01676636 (ISSN) Khoei, A. R ; Ghahremani, P ; Sharif University of Technology
    Abstract
    In this paper, a novel temperature-dependent multi-scale method is developed to investigate the role of temperature on surface effects in the analysis of nano-scale materials. In order to evaluate the temperature effect in the micro-scale (atomic) level, the temperature related Cauchy-Born hypothesis is implemented by employing the Helmholtz free energy, as the energy density of equivalent continua relating to the inter-atomic potential. The multi-scale technique is applied in atomistic level (nano-scale) to exhibit the temperature related characteristics. The first Piola-Kirchhoff stress and tangential stiffness tensor are computed, as the first and second derivatives of the free energy... 

    Surface/interface effect on the scattered fields of an anti-plane shear wave in an infinite medium by a concentric multi-coated nanofiber/nanotube

    , Article European Journal of Mechanics, A/Solids ; Volume 32 , 2012 , Pages 21-31 ; 09977538 (ISSN) Shodja, H. M ; Pahlevani, L ; Sharif University of Technology
    Abstract
    In this paper, the scattering of anti-plane shear waves in an infinite matrix containing a multi-coated nanofiber/nanotube is studied. Based on the fact that the surface to volume ratio for nano-size objects increases, the usual classical theories which generally neglect the surface/interface effects fail to provide reasonable results. Therefore, to analyze the problem the wave-function expansion method is coupled with the surface/interface elasticity theory. In order to provide some quantitative results through consideration of several examples, the knowledge of the relevant surface and/or interface properties of the corresponding constituent materials are required. For this reason, part of... 

    Multi-scale modeling of surface effect via the boundary Cauchy-Born method

    , Article International Journal for Numerical Methods in Engineering ; Volume 85, Issue 7 , August , 2011 , Pages 827-846 ; 00295981 (ISSN) Qomi, M. J. A ; Aghaei, A ; Khoei, A. R ; Sharif University of Technology
    2011
    Abstract
    In this paper, a novel multi-scale approach is developed for modeling of the surface effect in crystalline nano-structures. The technique is based on the Cauchy-Born hypothesis in which the strain energy density of the equivalent continua is calculated by means of inter-atomic potentials. The notion of introducing the surface effect in the finite element method is based on the intrinsic function of quadratures, called as an indicator of material behavior. The information of quadratures is derived by interpolating the data from probable representative atoms in their proximity. The technique is implemented by the definition of reference boundary CB elements, which enable to capture not only... 

    Surface and interface effects on torsion of eccentrically two-phase fcc circular nanorods: Determination of the surface/interface elastic properties via an atomistic approach

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 78, Issue 1 , October , 2011 , Pages 0110111-01101111 ; 00218936 (ISSN) Pahlevani, L ; Shodja, H. M ; Sharif University of Technology
    2011
    Abstract
    The effect of surface and interface elasticity in the analysis of the Saint-Venant torsion problem of an eccentrically two-phase fcc circular nanorod is considered; description of the behavior of such a small structure via usual classical theories cease to hold. In this work, the problem is formulated in the context of the surface/interface elasticity. For a rigorous solution of the proposed problem, conformal mapping with a Laurent series expansion are employed together. The numerical results well illustrate that the torsional rigidity and stress distribution corresponding to such nanosized structural elements are significantly affected by the size. In order to employ surface and interface... 

    Planar molecular dynamics simulation of Au clusters in pushing process

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 288-296 ; 17469392 (ISSN) Mahboobi, S. H ; Meghdari, A ; Jalili, N ; Amiri, F ; Sharif University of Technology
    2010
    Abstract
    Based on the fact that the manipulation of fine nanoclusters calls for more precise modelling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviours. Performing the planar simulations can provide a fairly acceptable qualitative tool for our purpose while the computation time is reduced extremely in comparison to 3D simulations. To perform this study, Nose-Hoover dynamics and Sutton-Chen interatomic potential will be used to investigate the behaviour of the aforementioned system. Pushing of... 

    Simulations of surface defects characterization using force modulation atomic force microscopy

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 6 , August–September , 2010 , Pages 681-687 ; 9780791849033 (ISBN) Nejat Pishkenari, H ; Meghdari, A. M ; Sharif University of Technology
    2010
    Abstract
    This paper is devoted to the characterization of the surface defects using a recently developed AFM technique named as frequency and force modulation AFM (FFM-AFM). The simulated system includes a recently developed gold coated AFM probe which interacts with a sample including single-atom vacancy and impurities. In order to examine the behavior of the above system including different transition metals, molecular dynamics (MD) simulation with Sutton-Chen (SC) interatomic potential is used. Along this line, an imaging simulation of the probe and sample is performed, and the effects of the horizontal scan speed, the effective frequency set-point, the cantilever stiffness, the tip-sample rest... 

    A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via the Sutton-Chen potential

    , Article Philosophical Magazine ; Volume 90, Issue 14 , 2010 , Pages 1893-1913 ; 14786435 (ISSN) Shodja, H. M ; Tehranchi, A ; Sharif University of Technology
    Abstract
    The usual continuum theories are inadequate in predicting the mechanical behavior of solids in the presence of small defects and stress concentrators; it is well known that such continuum methods are unable to detect the change of the size of the inhomogeneities and defects. For these reasons various augmented continuum theories and strain gradient theories have been proposed in the literature. The major difficulty in implication of these theories lies in the lack of information about the additional material constants which appear in such theories. For fcc metals, for the calculation of the associated characteristic lengths which arise in first strain gradient theory, an atomistic approach... 

    Surface defects characterization with frequency and force modulation atomic force microscopy using molecular dynamics simulations

    , Article Current Applied Physics ; Volume 10, Issue 2 , 2010 , Pages 583-591 ; 15671739 (ISSN) Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    2010
    Abstract
    This paper is devoted to the characterization of the surface defects using a recently developed AFM technique called frequency and force modulation AFM (FFM-AFM). The simulated system includes a recently developed gold coated AFM probe which interacts with a sample including single-atom vacancy and impurities. In order to examine the behavior of the above system on different transition metals, the molecular dynamics (MD) simulation with Sutton-Chen (SC) inter-atomic potential is used. In this study, an online imaging simulation of the probe and sample is performed, and the effects of the horizontal scan speed, the effective frequency set-point, the cantilever stiffness, the tip-sample rest... 

    Nonlinear vibrational analysis of single-layer graphene sheets

    , Article Nanotechnology ; Volume 21, Issue 10 , 2010 ; 09574484 (ISSN) Sadeghi, M ; Naghdabadi, R ; Sharif University of Technology
    2010
    Abstract
    Recent experiments have shown the applicability of single-layer graphene sheets (SLGSs) as electromechanical resonators. Existing theoretical models, based on linear continuum or atomistic methods, are limited to the study of linear vibrations of SLGSs. Here we introduce a hybrid atomistic-structural element which is capable of modelling nonlinear behaviour of graphene sheets. This hybrid element is based on an empirical inter-atomic potential function and can model the nonlinear dynamic response of SLGSs. Using this element, nonlinear vibrational analysis of SLGSs is performed. It is shown that the nonlinear vibrational analysis of SLGSs predicts significantly higher fundamental... 

    Introducing structural approximation method for modeling nanostructures

    , Article Journal of Computational and Theoretical Nanoscience ; Volume 7, Issue 2 , February , 2010 , Pages 423-428 ; 15461955 (ISSN) Momeni, K ; Alasty, A ; Sharif University of Technology
    2010
    Abstract
    In this work a new method for analyzing nanostructured materials has been proposed to accelerate the simulations for solid crystalline materials. The proposed Structural Approximation Method (SAM) is based on Molecular Dynamics (MD) and the accuracy of the results can also be improved in a systematic manner by sacrificing the simulation speed. In this method a virtual material is used instead of the real one, which has less number of atoms and therefore fewer degrees of freedom, compared to the real material. The number of differential equations that must be integrated in order to specify the state of the system will decrease significantly, and the simulation speed increases. To generalize... 

    Tip geometry effects in surface characterization with amplitude modulation AFM

    , Article Scientia Iranica ; Volume 17, Issue 1 F , 2010 , Pages 27-34 ; 10263098 (ISSN) Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    Abstract
    In the present work, characterization of the surface trenches and vacancies with Amplitude Modulation AFM (AM-AFM) using Molecular Dynamics (MD) is simulated and the effects of the tip shape on the resulting images are investigated. The simulated system includes a recently developed gold coated AFM probe which interacts with a sample including a surface trench or a single-atom vacancy. In order to examine the behavior of the above system, including different transition metals, a Molecular Dynamics (MD) simulation with Sutton-Chen (SC) interatomic potential is used. Special attention is dedicated to the study of tip geometry effects such as the tip apex radius, the tip cone angle, the probe... 

    Qualitative study of nanoassembly process: 2-D molecular dynamics simulations

    , Article Scientia Iranica ; Volume 17, Issue 1 F , 2010 , Pages 1-11 ; 10263098 (ISSN) Mahboobi, S. H ; Meghdari, A ; Jalili, N ; Amiri, F ; Sharif University of Technology
    2010
    Abstract
    Precise positioning of nanoclusters through manipulation in the presence of other clusters is one of the main challenging tasks in nanoclusters assembly. Currently, the size of clusters which are used as building blocks is decreasing to a few nanometers. As a result, the particle nature of the matter has a crucial role in manipulator/cluster/substrate interactions. In order to understand and predict the behavior of nanoclusters during the positioning process, it is, therefore, essential to have a deep insight into the aforementioned nanoscale interactions, in this research, 2-D molecular dynamics simulations are used to investigate such behaviors. Performing the planar simulations can... 

    An atomistic based model for interacting crack and inhomogeneity in fcc metals under polynomial loading

    , Article 12th International Conference on Fracture 2009, ICF-12, 12 July 2009 through 17 July 2009, Ottawa, ON ; Volume 5 , 2009 , Pages 3597-3605 ; 9781617382277 (ISBN) Shodja, H. M ; Tehranchi, A ; Ghassemi, M ; Sharif University of Technology
    Abstract
    Classical continuum mechanics fails to give accurate solution near the crack tip, moreover, it implies that a solid is able to sustain an infinite stress at the Griffith-Inglis crack tips. Among other critical issues is the inability of the classical approach to sense the size effect. For these reasons, for more in-depth understandings and accurate behavioral predictions, it is essential to develop some atomistic methods which properly accounts, not only for the structure but also the long and short range atomic interactions effectively. In this work the interaction of inhomogeneity and crack under polynomial loading is simulated by using the many body Rafii-Tabar and Sutton potential... 

    Multiscale nonlinear constitutive modeling of carbon nanostructures based on interatomic potentials

    , Article Computers, Materials and Continua ; Volume 10, Issue 1 , 2009 , Pages 41-64 ; 15462218 (ISSN) Ghanbari, J ; Naghdabadi, R ; Sharif University of Technology
    Abstract
    Continuum-based modeling of nanostructures is an efficient and suitable method to study the behavior of these structures when the deformation can be considered homogeneous. This paper is concerned about multiscale nonlinear tensorial constitutive modeling of carbon nanostructures based on the interatomic potentials. The proposed constitutive model is a tensorial equation relating the second Piola-Kirchhoff stress tensor to Green-Lagrange strain tensor. For carbon nanotubes, some modifications are made on the planar representative volume element (RVE) to account for the curved atomic structure resulting a non-planar RVE. Using the proposed constitutive model, the elastic behavior of the... 

    Simulations of surface defects characterization using force modulation atomic force microscopy

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009, San Diego, CA ; Volume 6 , 2009 , Pages 681-687 ; 9780791849033 (ISBN) Nejat Pishkenari,H. N ; Meghdari, A ; Sharif University of Technology
    Abstract
    This paper is devoted to the characterization of the surface defects using a recently developed AFM technique named as frequency and force modulation AFM (FFM-AFM). The simulated system includes a recently developed gold coated AFM probe which interacts with a sample including single-atom vacancy and impurities. In order to examine the behavior of the above system including different transition metals, molecular dynamics (MD) simulation with Sutton-Chen (SC) interatomic potential is used. Along this line, an imaging simulation of the probe and sample is performed, and the effects of the horizontal scan speed, the effective frequency set-point, the cantilever stiffness, the tip-sample rest... 

    Characterization of silicon surface elastic constants based on different interatomic potentials

    , Article Thin Solid Films ; Volume 626 , 2017 , Pages 104-109 ; 00406090 (ISSN) Nejat Pishkenari, H ; Rezaei, S ; Sharif University of Technology
    Abstract
    Mechanical properties of materials are an important factor in designing nanoscale systems. Several researches and experiments have shown that the mechanical properties of the nano-scale materials are different from those of bulk. One of the major reasons for this difference is that the ratio of surface to volume increases at the nano-scale, and the effects of free surfaces become very important. In this paper, we have measured the surface elastic constants of silicon crystalline structure using different interatomic potentials. The potentials employed here are EDIP (Environment-Dependent Interatomic Potential), Stillinger-Weber and Tersoff, and also different crystalline orientations are... 

    Qualitative study of nanocluster positioning process: 2D molecular dynamics simulations

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 13, Issue PART B , 2009 , Pages 1161-1170 ; 9780791848746 (ISBN) Mahboobi, H ; Meghdari, A ; Jalili, N ; Amiri, F ; Sharif University of Technology
    2009
    Abstract
    One of the key factors in the assembly of nanoclusters is the precise positioning of them by a manipulation system. Currently the size of clusters used as building blocks is shrinking down to a few nanometers. In such cases, the particle nature of matter plays an important role in the manipulator/cluster/substrate interactions. Having a deeper insight to the aforementioned nanoscale interactions is crucial for prediction and understanding of the behavior of nanoclusters during the positioning process. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing planar simulations can provide a fairly acceptable qualitative tool for our...