Loading...
Search for: karimi--m
0.015 seconds
Total 69 records

    Voltammetric studies of a cobalt(II)-4-methylsalophen modified carbon-paste electrode and its application for the simultaneous determination of cysteine and ascorbic acid

    , Article Electrochimica Acta ; Volume 50, Issue 1 , 2004 , Pages 77-84 ; 00134686 (ISSN) Shahrokhian, S ; Karimi, M ; Sharif University of Technology
    2004
    Abstract
    A carbon-paste electrode (CPE) chemically modified with the cobalt(II)-4-methylsalophen (CoMSal) as a Schiff base complex was used as a highly sensitive and fairly selective electrochemical sensor for simultaneous, determination of minor mounts of ascorbic acid (AA) and cysteine. This modified electrode shows very efficient electrocatalytic activity for anodic oxidation of both AA and cysteine via substantially decreasing of anodic overpotentials for both compounds. The. mechanism of electrochemical oxidation of both AA and cysteine using CoMSal-modified electrode was thoroughly investigated by cyclic voltammetry and polarization studies. Results of cyclic voltammetry (CV) and differential... 

    Viscoelastic-based approach to evaluate low temperature performance of asphalt binders

    , Article Construction and Building Materials ; Volume 128 , 2016 , Pages 384-398 ; 09500618 (ISSN) Jahanbakhsh, H ; Karimi, M. M ; Moghadas Nejad, F ; Jahangiri, B ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Through the strategic highway research program (SHRP) project, time-temperature superposition (TTS) was used to reduce the loading time of bending beam rheometer (BBR) test. Based on TTS, stiffness of the asphalt binder after a two-hour loading time is similar to that after 60 s at 10 °C above. This study attempted to evaluate the TTS validity using finite element (FE) method by developing master curves in a broad range of low temperatures. The results indicated that TTS was neither valid for modified asphalt binders nor for neat binder. Also, in addition to the loading time dependency of m-value, limiting values of stiffness and m-value find no rheological acceptance. As a remedy, thermally... 

    Three-dimensional nonlinear seismic analysis of concrete faced rockfill dams subjected to scattered P, SV, and SH waves considering the dam-foundation interaction effects

    , Article Soil Dynamics and Earthquake Engineering ; Volume 31, Issue 5-6 , 2011 , Pages 792-804 ; 02677261 (ISSN) Seiphoori, A ; Mohsen Haeri, S ; Karimi, M ; Sharif University of Technology
    2011
    Abstract
    In this study, the nonlinear seismic analysis of a typical three-dimensional concrete faced rockfill dam is reported. Three components of the Loma Prieta (Gilroy 1 station) earthquake acceleration time history are used as input excitation. The dam under study is considered as if it were located in a prismatic canyon with a trapezoidal cross-section. A nonlinear model for the rockfill material is used, and contact elements with Coulomb friction law are utilized at the slab-rockfill interface. Vertical joints in the face slab are also considered in the finite element model. A substructure method, in which the unbounded soil is modelled by the scaled boundary finite element method (SBFEM), is... 

    Thermodynamic analysis of a hybrid gas turbine/thermoacoustic heat pump/refrigeration engine

    , Article International Journal of Exergy ; Volume 15, Issue 2 , 1 November , 2014 , Pages 152-170 ; ISSN: 17428297 Ghorbanian, K ; Karimi, M ; Sharif University of Technology
    Abstract
    Possible performance enhancement of small gas turbine power plants through the application of thermoacoustic systems is examined. The thermoacoustic subsystem is powered only by the waste heat of the gas turbine. Two different gas turbine configurations are considered: a Thermoacoustic refrigerator assisted gas turbine (TRG) and a Combined thermoacoustic heat pump and refrigeration assisted gas turbine (CTHRG). Exergy, rational efficiency and relative power gain (RPG) of these configurations are compared with those from the recuperated gas turbine engine. The results indicate that the integration of thermoacoustic system to a simple gas turbine cycle will not only enhance the energy/exergy... 

    Stimulus-responsive sequential release systems for drug and gene delivery

    , Article Nano Today ; Volume 34 , 2020 Ahmadi, S ; Rabiee, N ; Bagherzadeh, M ; Elmi, F ; Fatahi, Y ; Farjadian, F ; Baheiraei, N ; Nasseri, B ; Rabiee, M ; Tavakoli Dastjerd, N ; Valibeik, A ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In recent years, a range of studies have been conducted with the aim to design and characterize delivery systems that are able to release multiple therapeutic agents in controlled and programmed temporal sequences, or with spatial resolution inside the body. This sequential release occurs in response to different stimuli, including changes in pH, redox potential, enzyme activity, temperature gradients, light irradiation, and by applying external magnetic and electrical fields. Sequential release (SR)-based delivery systems, are often based on a range of different micro- or nanocarriers and may offer a silver bullet in the battle against various diseases, such as cancer. Their distinctive... 

    Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications

    , Article Nanotechnology Reviews ; 2017 ; 21919089 (ISSN) Sahandi Zangabad, P ; Mirkiani, S ; Shahsavari, S ; Masoudi, B ; Masroor, M ; Hamed, H ; Jafari, Z ; Davatgaran Taghipour, Y ; Hashemi, H ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Abstract
    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among different types of self-assembled NPs, liposomes stand out for their non-toxic nature, and their possession of dual hydrophilic-hydrophobic domains. Advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. Firstly, ligands for active... 

    Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications

    , Article Nanotechnology Reviews ; Volume 7, Issue 1 , 2018 , Pages 95-122 ; 21919089 (ISSN) Sahandi Zangabad, P ; Mirkiani, S ; Shahsavari, S ; Masoudi, B ; Masroor, M ; Hamed, H ; Jafari, Z ; Davatgaran Taghipour, Y ; Hashemi, H ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Walter de Gruyter GmbH  2018
    Abstract
    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among the different types of self-assembled NPs, liposomes stand out for their non-toxic nature and their possession of dual hydrophilic-hydrophobic domains. The advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. First, ligands for... 

    Simulating of X-states and the two-qubit XYZ Heisenberg system on IBM quantum computer

    , Article Physica Scripta ; Volume 97, Issue 2 , 2022 ; 00318949 (ISSN) Shahbeigi, F ; Karimi, M ; Karimipour, V ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Two qubit density matrices which are of X-shape, are a natural generalization of Bell Diagonal States (BDSs) recently simulated on the IBM quantum device. We generalize the previous results and propose a quantum circuit for simulation of a general two qubit X-state, implement it on the same quantum device, and study its entanglement for several values of the extended parameter space. We also show that their X-shape is approximately robust against noisy quantum gates. To further physically motivate this study, we invoke the two-spin Heisenberg XYZ system and show that for a wide class of initial states, it leads to dynamical density matrices which are X-states. Due to the symmetries of this... 

    Relaxation of hardening in asphalt concrete under cyclic compression loading

    , Article Journal of Materials in Civil Engineering ; Volume 29, Issue 5 , 2017 ; 08991561 (ISSN) Jahangiri, B ; Karimi, M. M ; Tabatabaee, N ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2017
    Abstract
    The present experimental study investigated the behavior of hot-mix asphalt (HMA) under repetitive creep and recovery loading. Cylindrical samples of HMA were subjected to trapezoidal and haversine loading followed by unloading. Different amounts of unloading (stress reduction) and relaxation periods (rest periods in complete unloading) were tested. The measured vertical deformation was decomposed into viscoelastic and viscoplastic components. It was observed for cyclic loading that an increase in unloading and/or relaxation period increased the recovery of viscoelastic strain, which in turn increased the accumulated viscoplastic strain in subsequent loading cycles. It appears that... 

    Recent developments in graphene and graphene oxide: properties, synthesis, and modifications: a review

    , Article ChemistrySelect ; Volume 5, Issue 33 , 2020 , Pages 10200-10219 Farjadian, F ; Abbaspour, S ; Abdolahi Sadatlu, M. A ; Mirkiani, S ; Ghasemi, A ; Hoseini Ghahfarokhi, M ; Mozaffari, N ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    Graphene was first discovered as a sheet structure mechanically exfoliated from a block of graphite, but in recent years researchers have extended their investigations into this two-dimensional carbon nanostructure. Various applications of graphene-based materials have included electronics, photonics, optoelectronics, sensors, and drug / gene delivery systems. These single atom carbon layers have the potential to be formed in different morphologies e. g., quantum dots, nanosheets, and nanoparticles, which can be tailored to achieve new breakthrough innovations. Nowadays, the utilization of graphene-based nanomaterials in medicine is a hot research topic. This review discusses the structure,... 

    Radioactivity levels in the mostly local foodstuff consumed by residents of the high level natural radiation areas of Ramsar, Iran

    , Article Journal of Environmental Radioactivity ; Volume 169-170 , 2017 , Pages 209-213 ; 0265931X (ISSN) Fathabadi, N ; Salehi, A. A ; Naddafi, K ; Kardan, M. R ; Yunesian, M ; Nabizadeh Nodehi, R ; Deevband, M. R ; Gooniband Shooshtari, M ; Hosseini, S. S ; Karimi, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Among High Level Natural Radiation Areas (HLNRAs) all over the world, the northern coastal city of Ramsar has been considered enormously important. Many studies have measured environmental radioactivity in Ramsar, however, no survey has been undertaken to measure concentrations in the diets of residents. This study determined the 226Ra activity concentration in the daily diet of people of Ramsar. The samples were chosen from both normal and high level natural radiation areas and based on the daily consumption patterns of residents. About 150 different samples, which all are local and have the highest consumption, were collected during the four seasons. In these samples, after washing and... 

    Probabilistic CFD analysis on the flow field and performance of the FDA centrifugal blood pump

    , Article Applied Mathematical Modelling ; Volume 109 , 2022 , Pages 555-577 ; 0307904X (ISSN) Mohammadi, R ; Karimi, M. S ; Raisee, M ; Sharbatdar, M ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    The present study is set out to systematically investigate the combined impact of operational, geometrical, and model uncertainties on the hemodynamics and performance characteristics in the U.S. Food and Drug Administration (FDA) benchmark centrifugal blood pump. Non-intrusive Polynomial Chaos Expansion (NIPCE) has been utilized to propagate the uncertainty of 12 random input variables in the flow field and the performance characteristics of the blood pump at three working conditions. The global sensitivity of the Quantities of Interest (QoI) to the uncertain input parameters was measured through the Sobol’ indices. The Multiple Reference Frames (MRF) approach and the SST k−ω turbulence... 

    Power system stability assessment during restoration based on a wide area measurement system

    , Article IET Generation, Transmission and Distribution ; Volume 6, Issue 11 , 2012 , Pages 1171-1179 ; 17518687 (ISSN) Nourizadeh, S ; Karimi, M. J ; Ranjbar, A. M ; Shirani, A ; Sharif University of Technology
    2012
    Abstract
    Online power system stability assessment during restoration has not been strongly addressed yet. The introduction of wide area measurement systems (WAMS), however, made it possible to monitor the stability online. This study technically presents a detailed analysis of stability during restoration using WAMS. The power system build-up strategy is used as the restoration approach, based on which the early and the last stages of restoration are to divide the power system into islands and interconnect them, respectively. In fact, the practical use of WAMS at the early stages of restoration provides precise determination of generators loading steps. Moreover, unification of phase angle references... 

    Power system restoration planning based on Wide Area Measurement System

    , Article International Journal of Electrical Power and Energy Systems ; Volume 43, Issue 1 , 2012 , Pages 526-530 ; 01420615 (ISSN) Nourizadeh, S ; Nezam Sarmadi, S. A ; Karimi, M. J ; Ranjbar, A. M ; Sharif University of Technology
    2012
    Abstract
    This paper presents a method for the optimal restoration planning based on Wide Area Measurement System (WAMS). This method uses observability analysis and Power Transfer Distribution Factor (PTDF) concept. The PTDF concept is applied to decrease the overvoltages caused by energizing transmission lines with lightly load. The New England 39 bus power system is used to demonstrate the proposed algorithm and verify the results. The outcomes of the study are evaluated to show the validity and reliability of the presented approach  

    Poly-L-lysine/hyaluronan nanocarriers as a novel nanosystem for gene delivery

    , Article Journal of Microscopy ; Volume 287, Issue 1 , 2022 , Pages 32-44 ; 00222720 (ISSN) Souri, M ; Bagherzadeh, M. A ; Mofazzal Jahromi, M. A ; Mohammad-Beigi, H ; Abdoli, A ; Mir, H ; Roustazadeh, A ; Pirestani, M ; Sahandi Zangabad, P ; Kiani, J ; Bakhshayesh, A ; Jahani, M ; Joghataei, M. T ; Karimi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The present research comes up with a novel DNA-loaded poly-L-lysine (PLL)/hyaluronan (HA) nanocarrier (DNA-loaded PLL/HA NCs) for gene delivery applications, as a promising candidate for gene delivery into diverse cells. A straightforward approach was employed to prepare such a nanosystem through masking DNA-loaded PLL molecules by HA. Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were used to analyse the interaction of the molecules as well as the physicochemical properties of the NCs. The NCs showed a negative charge of –24 ± 3 mV, with an average size of 138 ±... 

    Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems

    , Article Critical Reviews in Biotechnology ; Volume 38, Issue 1 , 2018 , Pages 47-67 ; 07388551 (ISSN) Malekzad, H ; Mirshekari, H ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Baniasadi, F ; Sharifi Aghdam, M ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble... 

    Photoluminescent carbon quantum dot/poly-L-Lysine core-shell nanoparticles: A novel candidate for gene delivery

    , Article Journal of Drug Delivery Science and Technology ; 2020 Hasanzadeh, A ; Mofazzal Jahromi, M. A ; Abdoli, A ; Mohammad Beigi, H ; Fatahi, Y ; Nourizadeh, H ; Zare, H ; Kiani, J ; Radmanesh, F ; Rabiee, N ; Jahani, M ; Mombeiny, R ; Karimi, M ; Sharif University of Technology
    Editions de Sante  2020
    Abstract
    Cationic polymers such as poly-L-lysine (PLL) are able to interact electrostatically with DNA to produce polymeric systems with nanometric diameters due to the neutralization and accumulation of DNA. This study integrates the outstanding properties of carbon quantum dots (CQDs) with PLL to develop a novel gene delivery vehicle with a core-shell hybrid nanostructure. The CQD/PLL core-shell nanoparticles (NPs) were, therefore, synthesized in such a way that they had narrow size distribution and an average diameter under 10 nm, both of which were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy exhibited that... 

    Photoluminescent carbon quantum dot/poly-L-Lysine core-shell nanoparticles: A novel candidate for gene delivery

    , Article Journal of Drug Delivery Science and Technology ; Volume 61 , 2021 ; 17732247 (ISSN) Hasanzadeh, A ; Mofazzal Jahromi, M. A ; Abdoli, A ; Mohammad Beigi, H ; Fatahi, Y ; Nourizadeh, H ; Zare, H ; Kiani, J ; Radmanesh, F ; Rabiee, N ; Jahani, M ; Mombeiny, R ; Karimi, M ; Sharif University of Technology
    Editions de Sante  2021
    Abstract
    Cationic polymers such as poly-L-lysine (PLL) are able to interact electrostatically with DNA to produce polymeric systems with nanometric diameters due to the neutralization and accumulation of DNA. This study integrates the outstanding properties of carbon quantum dots (CQDs) with PLL to develop a novel gene delivery vehicle with a core-shell hybrid nanostructure. The CQD/PLL core-shell nanoparticles (NPs) were, therefore, synthesized in such a way that they had narrow size distribution and an average diameter under 10 nm, both of which were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy exhibited that... 

    Performance analysis of internally coded time-hopping coherent ultrashort light pulse CDMA scheme in fiber-optic communication systems

    , Article Journal of Lightwave Technology ; Volume 25, Issue 4 , 2007 , Pages 1095-1106 ; 07338724 (ISSN) Tabataba, F. S ; Aghajanzadeh, S. M ; Nasiri Kenari, M ; Karimi, M ; Sharif University of Technology
    2007
    Abstract
    We consider an internally coded time-hopping coherent ultrashort light pulse code division multiple access scheme (TH-CULP CDMA) and analyze its performance in the fiber-optic communication systems. This system combines the TH and CULP CDMA techniques and exploits the advantages of both. In our method, each bit time interval is divided into Ns frames, and the spectral phase-coded pulse is transmitted in one of these frames. Two exclusive PN sequences are assigned to each user. One is added to a superorthogonal convolutional encoder output to select the transmission frame, and the other is used to encode the phase of the ultrashort pulse in the spectral domain. We evaluate the bit error rate... 

    Optical assays based on colloidal inorganic nanoparticles

    , Article Analyst ; Volume 143, Issue 14 , 2018 , Pages 3249-3283 ; 00032654 (ISSN) Ghasemi, A ; Rabiee, N ; Ahmadi, S ; Hashemzadeh, S ; Lolasi, F ; Bozorgomid, M ; Kalbasi, A ; Nasseri, B ; Shiralizadeh Dezfuli, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    Colloidal inorganic nanoparticles have wide applications in the detection of analytes and in biological assays. A large number of these assays rely on the ability of gold nanoparticles (AuNPs, in the 20 nm diameter size range) to undergo a color change from red to blue upon aggregation. AuNP assays can be based on cross-linking, non-cross linking or unmodified charge-based aggregation. Nucleic acid-based probes, monoclonal antibodies, and molecular-affinity agents can be attached by covalent or non-covalent means. Surface plasmon resonance and SERS techniques can be utilized. Silver NPs also have attractive optical properties (higher extinction coefficient). Combinations of AuNPs and AgNPs...