Loading...
Search for: lime
0.013 seconds
Total 45 records

    3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs

    , Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 Erdem, A ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties... 

    Adsorption dynamics of surface-modified silica nanoparticles at solid-liquid interfaces

    , Article Langmuir ; Volume 38, Issue 41 , 2022 , Pages 12421-12431 ; 07437463 (ISSN) Khazaei, M. A ; Bastani, D ; Mohammadi, A ; Kordzadeh, A ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Understanding the adsorption dynamics of nanoparticles at solid-liquid interfaces is of paramount importance to engineer nanoparticles for a variety of applications. The nanoparticle surface chemistry is significant for controlling the adsorption dynamics. This study aimed to experimentally examine the adsorption of surface-modified round-shaped silica nanoparticles (with an average diameter of 12 nm), grafted with hydrophobic (propyl chains) and/or hydrophilic (polyethylene glycol chains) agents, at an aqueous solution-silica interface with spherical soda-lime glass beads (diameter of 3 mm) being used as adsorbents. While no measurable adsorption was observed for solely hydrophobic or... 

    A study on optoelectronic properties of copper zinc tin sulfur selenide: A promising thin-film material for next generation solar technology

    , Article Crystal Research and Technology ; Volume 56, Issue 7 , 2021 ; 02321300 (ISSN) Ali, N ; Zubair, M ; Khesro, A ; Ahmed, R ; Uddin, S ; Shahzad, N ; Alrobei, H ; Kalam, A ; Al Sehemi, A. G ; Ul Haq, B ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Studies on copper zinc tin sulpher selenide (CZTSSe) thin-film material and its applications as a base material are intensively being researched since it is an earth-abundant, inexpensive, flexible, and interesting material for next-generation optoelectronic technologies. Apropos, this study explores and reports the synthesis of CZTSSe thin films and their key optoelectronics characteristics. The reported films are fabricated on a soda-lime glass substrate by using a physical vapor deposition technique, and then annealed from 250 to 450 °C. From the X-ray diffraction analysis, the structure of the as-deposited thin films is found to be amorphous in nature. Annealed thin films of CZTSSe... 

    A Study on Optoelectronic Properties of Copper Zinc Tin Sulfur Selenide: A Promising Thin-Film Material for Next Generation Solar Technology

    , Article Crystal Research and Technology ; Volume 56, Issue 7 , 2021 ; 02321300 (ISSN) Ali, N ; Zubair, M ; Khesro, A ; Ahmed, R ; Uddin, S ; Shahzad, N ; Alrobei, H ; Kalam, A ; Al-Sehemi, A. G ; Ul Haq, B ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Studies on copper zinc tin sulpher selenide (CZTSSe) thin-film material and its applications as a base material are intensively being researched since it is an earth-abundant, inexpensive, flexible, and interesting material for next-generation optoelectronic technologies. Apropos, this study explores and reports the synthesis of CZTSSe thin films and their key optoelectronics characteristics. The reported films are fabricated on a soda-lime glass substrate by using a physical vapor deposition technique, and then annealed from 250 to 450 °C. From the X-ray diffraction analysis, the structure of the as-deposited thin films is found to be amorphous in nature. Annealed thin films of CZTSSe... 

    Biodiesel production using CaO/γ-Al2O3 catalyst synthesized by sol-gel method

    , Article Canadian Journal of Chemical Engineering ; Volume 93, Issue 9 , July , 2015 , Pages 1531-1538 ; 00084034 (ISSN) Moradi, G ; Mohadesi, M ; Rezaei, R ; Moradi, R ; Sharif University of Technology
    Wiley-Liss Inc  2015
    Abstract
    In this study, 40% CaO/γ-Al2O3 catalyst was used for biodiesel production from corn oil. A transesterification reaction was done for 5h at a temperature of 65°C in the presence of corn oil, methanol (methanol to oil molar ratio of 12:1), and CaO/γ-Al2O3 catalyst (0.06g/g (6wt%)). Catalyst used in this study was synthesized using the sol-gel method. In this method, two parameters of gelation temperature and nitric acid concentration were used as variables in the catalyst synthesis step, and experiments were designed using central composite design (CCD). The results indicate that the optimal point is achieved at a gelation temperature of 70°C and... 

    Characterization and calcination behavior of a low-grade manganese ore

    , Article Materials Today Communications ; Volume 25 , 2020 Cheraghi, A ; Becker, H ; Eftekhari, H ; Yoozbashizadeh, H ; Safarian, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Characterization and calcination behavior of a low-grade manganese ore, as a part of Mn ferroalloys production, was studied by XRF, ex-situ XRD, in-situ XRD, and SEM-EDS techniques. Calcination experiments were carried out at and up to 900 °C (1173 K) in air and argon atmospheres. The samples were in particles and powder forms. The results indicated that both quartz and calcite phases in the ore exhibit a bimodal spatial distribution; as relatively large regions and finely distributed in the Mn- and Fe-containing phases. By Rietveld analysis of the in-situ XRD data, the reactions occurring upon heating during the calcination process were deduced. Thermal decomposition and reactive diffusion... 

    Characterization of optical properties of amorphous BaTiO3 nanothin films

    , Article Journal of Non-Crystalline Solids ; Volume 355, Issue 50-51 , 2009 , Pages 2480-2484 ; 00223093 (ISSN) Ashiri, R ; Nemati, A ; Sasani Ghamsari, M ; Aadelkhani, H ; Sharif University of Technology
    Abstract
    Amorphous barium titanate nanothin films were prepared by sol-gel dip-coating method. According to transmission spectrum, the refractive index and optical band gap of nanothin films have been determined. High transmission spectrum without any fluctuation in visible wavelength region was recorded. Experimental results indicated that the surface morphology of prepared nanothin films were improved and as a result of that, a better optical properties, less optical losses and higher band gap width were obtained in contrast with other reported data. It was found that optical propagation loss of BaTiO3 nanothin film was much lower than normal polycrystalline BaTiO3 thin film. It seems to us that,... 

    Cracking performance of rubberized RAP mixtures with Sasobit

    , Article Construction and Building Materials ; Volume 319 , 2022 ; 09500618 (ISSN) Abdollahi, S. F ; Karimi, M. M ; Jahanbakhsh, H ; Tabatabaee, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Incorporation of reclaimed asphalt pavement (RAP) and crumb rubber (CR) materials into asphalt mixtures have been of great importance from sustainability point of view. Although, inclusion of RAP materials in asphalt mixtures improves the rutting resistance at high temperature, the low temperature (LT) and intermediate temperature (IT) cracking performance of RAP mixtures may need additional considerations. In this regard, different schemes of modification have been applied to RAP mixtures to address its performance weaknesses. This study evaluated the effect of RAP and CR in combination with Sasobit and hydrated lime on the cracking performance of asphalt mixtures. The LT and IT... 

    Dynamic analysis of mud loss during overbalanced drilling operation: An experimental study

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Shad, S ; Salmanpour, S ; Zamani, H ; Zivar, D ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Mud filtration happens during an overbalanced drilling operation that causes mud invasion into pores and fractures. The productivity of a formation is significantly affected by the invasion of the mud into the near-wellbore area during the mud loss process. A considerable number of studies have evaluated mud filtration statically; however, a few studies have considered the dynamic behavior of a mud loss process during overbalanced drilling, which results in the inadequate prediction of the mud loss volume and inflicted damage to the formation. In this study, a near-wellbore simulation system (NeWSS) was designed to evaluate the dynamic mud loss behavior using dimensionless parameters and... 

    Effect of cement type on the mechanical behavior of a gravely sand

    , Article Geotechnical and Geological Engineering ; Volume 24, Issue 2 , 2006 , Pages 335-360 ; 09603182 (ISSN) Haeri, S. M ; Hamidi, A ; Hosseini, S. M ; Asghari, E ; Toll, D. G ; Sharif University of Technology
    2006
    Abstract
    The behavior of a cemented gravely sand was studied using triaxial compression tests. Gypsum, Portland cement and lime were used as the cementing agents in sample preparation. The samples with different cement types were compared in equal cement contents. Three cement contents of 1.5%, 3.0% and 4.5% were selected for sample preparation. Drained and undrained triaxial compression tests were conducted in a range of confining pressures from 25 kPa to 500 kPa. Failure modes, shear strength, stress-strain behavior, volume and pore pressure changes were considered. The gypsum cement induced the highest brittleness in soil among three cement types while the Portland cement was found to be the most... 

    Effects of moisture on warm mix asphalt containing Sasobit

    , Article Scientia Iranica ; Volume 24, Issue 4 , 2017 , Pages 1866-1873 ; 10263098 (ISSN) Nabizadeh, H ; Naderi, B ; Tabatabaee, N ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    The asphalt industry has been at the forefront of sustainable development. Warm Mix Asphalt (WMA) has been developed to cope with issues such as high energy prices and air pollution. These mixes require less energy and generate fewer pollutants during production in comparison with conventional Hot Mix Asphalt (HMA). Although a promising technology, the durability of WMA is not clear because long-term WMA field performance data is limited. This study investigated the susceptibility of Sasobit-modified WMA to moisture, since moisture damage is a major cause of premature pavement failure in asphalt concrete. To this end, WMA samples were made using different concentrations of Sasobit and the... 

    Effects of saturation degrees, freezing-thawing, and curing on geotechnical properties of lime and lime-cement concretes

    , Article Cold Regions Science and Technology ; Volume 160 , 2019 , Pages 242-251 ; 0165232X (ISSN) Jahandari, S ; Saberian, M ; Tao, Z ; Mojtahedi, S.F ; Li, J ; Ghasemi, M ; Rezvani, S. S ; Li, W ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    There are very limited researches carried out to investigate the influence of saturation degrees, freezing-thawing, and curing times on geotechnical properties of lime concrete (LC) and lime-cement concrete (LCC) due to the capillary action and changes in groundwater table. Subsequently, the primary goal of this research is to investigate the influence of these parameters on mechanical properties of LC and LCC using unconfined compression tests, namely uniaxial compressive strength (UCS), stress-strain behavior, deformability index (I D ), secant modulus (E S ), failure strain, bulk modulus (K), resilient modulus (M R ), brittleness index (I B ), and shear modulus (G). At first, the... 

    Effects of substrate material and annealing temperature on morphology of zinc oxide films

    , Article Materials Science and Technology ; Volume 22, Issue 3 , 2006 , Pages 308-314 ; 02670836 (ISSN) Vaezi, M. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    2006
    Abstract
    A two stage chemical deposition (TSCD) technique is used to produce ZnO films on quartz glass (QG), soda lime glass (SLG) and high purity alumina (HPA) from an aqueous solution of zinc complex. The effects of the substrate material on the chemical composition and morphology of the deposited layer are investigated. The effects of different annealing temperatures (180, 300, 500 and 800°C) on the morphology and orientation of the ZnO crystallites are also determined. X-ray diffraction diffractograms show that above 300°C, the intensity of (002) peak considerably decreases with increasing temperature. Results indicate that changing the substrate from QG to SLG does not significantly influence... 

    Evaporation mitigation assessment by self-assembled nano-thickness films in shallow fresh water lake using fixed and semi-floating pans

    , Article Environmental Processes ; Volume 9, Issue 3 , 2022 ; 21987491 (ISSN) Nejatian, A ; Mohammadi, M ; Doulabi, M ; Iraji zad, A ; Tajrishy, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Controlling evaporation plays an essential role in arid and semi-arid water resources systems where it accounts for a considerable amount of reservoirs outflow. In this study, we have evaluated evaporation reduction efficiency of different kinds of self-assembled nano-thickness films. The films consist of six different combinations of stearyl and cetyl alcohols with additives such as jojoba oil, stearic acid, and calcium hydroxide. The study lasted from July to August and utilized two pairs of class A evaporation pans: one pair was semi-floating on Chitgar lake water surface while the other one was located on the shore. The experimental results showed that a monolayer containing 3:1 stearyl... 

    Experimental study of dynamic imbibition during water flooding of naturally fractured reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 174 , 2019 , Pages 1-13 ; 09204105 (ISSN) Harimi, B ; Masihi, M ; Mirzaei Paiaman, A ; Hamidpour, E ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Capillary imbibition is an important recovery mechanism in naturally fractured reservoirs when water-filled fractures surround water-wet matrix blocks. A large amount of studies of imbibition process is simply total or partial immersion of nonwetting phase saturated rock in aqueous wetting phase. However, water advance in fractures during water flooding or water encroachment from an active aquifer introduces time dependent boundary conditions where invariant exposure of rock surface to water is not representative. In this work, a laboratory simulated matrix-fracture system was used to investigate different aspects of imbibition in the presence of fracture fluid flow (namely dynamic... 

    Growth of Na0.3WO3 nanorods for the field emission application

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 20 , 2009 ; 00223727 (ISSN) Azimirad, R ; Khademi, A ; Akhavan, O ; Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    Na0.3WO3 1D nanostructure forms (nanorods and nanobelts) were grown by a solid-liquid-solid mechanism from a 40 nm sputtered tungsten film deposited on a soda-lime substrate and annealed at 700 °C in a tubular furnace in N2 ambient. The morphology, structure, composition and chemical state of the prepared nanostructures were characterized by SEM, XRD, TEM, SAED and XPS measurements. The Na0.3WO3 1D nanostructures were found to have a cubic crystalline structure and grown along the [0 0 1] direction. The nanorods are a few micrometres in length and about 50 nm in diameter. The field-emission application of the prepared samples at different distances between the cathode and the anode was... 

    Image-based segmentation and quantification of weak interlayers in rock tunnel face via deep learning

    , Article Automation in Construction ; Volume 120 , 2020 Chen, J ; Zhang, D ; Huang, H ; Shadabfar, M ; Zhou, M ; Yang, T ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this paper, an advanced integrated pixel-level method based on the deep convolutional neural network (DCNN) approach named DeepLabv3+ is proposed for weak interlayers detection and quantification. Furthermore, a database containing 32,040 images of limestone, dolomite, loess clay, and red clay is established to verify this method. The proposed model is then trained, validated, and tested via feeding multiple weak interlayers. Moreover, robustness and adaptability of the proposed model are evaluated, and the weak interlayers are extracted. Compared with the fully convolutional network (FCN)-based method and traditional image techniques, the proposed model provides higher accuracy in terms... 

    Impact of rock mineralogy on reservoir souring: A geochemical modeling study

    , Article Chemical Geology ; Volume 555 , November , 2020 Li, H ; Zhang, L ; Liu, L ; Shabani, A ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    The petroleum industry suffers from reservoir souring phenomena, which has negative impacts on production facilities, health, and environment. Injection of incompatible water into the reservoir (waterflooding), which is considered as an enhanced oil recovery (EOR) method, is one of the most common causes of reservoir souring. In general, injected brine, especially seawater, contains high amounts of sulfate ion (SO42−). A high concentration of sulfate in the presence of sulfate-reducing bacteria (SRB) leads to the microbial reservoir souring. During this phenomenon, sulfide, specifically hydrogen sulfide gas (H2S) appears in the producing fluid of the reservoir. In this paper, a coupled... 

    Integrated image processing and computational techniques to characterize formation damage

    , Article SPE International Conference and Exhibition on Formation Damage Control 2018, 7 February 2018 through 9 February 2018 ; Volume 2018-February , 2018 Ezeakacha, C. P ; Rabbani, A ; Salehi, S ; Ghalambor, A ; Sharif University of Technology
    Society of Petroleum Engineers (SPE)  2018
    Abstract
    Filtrate and solid invasion from drilling fluids are two key sources of formation damage, and can result in formation permeability impairment. Typically, spurt invasion of mud solids causes the evolution of an external mud cake which tends to reduce further solids and filtrate influx. However, uncontrolled spurt and filtrate invasion are detrimental because they reduce the permeability of the formation. Mud composition, formation rock's permeability and porosity, and temperature can influence both spurt and filtrate invasion. The sizes of mud solids relative to the average pore size of a rock are also important in predicting the extent of mud invasion and permeability impairment. In this... 

    In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process

    , Article Materials Science and Engineering C ; Volume 33, Issue 1 , 2013 , Pages 390-396 ; 09284931 (ISSN) Rezaei, A ; Mohammadi, M. R ; Sharif University of Technology
    2013
    Abstract
    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which has been extensively used in medicine as implantable materials, owing to its good biocompatibility, bioactivity high osteoconductive, and/or osteoinductive properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL), a newly remarkable biocompatible and biodegradable polymer, was employed as a matrix and hydroxyapatite nanoparticles were used as a reinforcement element of the composite. HA/PCL nanocomposites were...