Loading...
Search for: low-temperatures
0.011 seconds
Total 142 records

    Evaluation of Warm Mix Asphalt containing Sasobit

    , M.Sc. Thesis Sharif University of Technology Naderi, Behzad (Author) ; Tabatabaee, Nader (Supervisor)
    Abstract
    Warm mix asphalt has received considerable attention over the past decade particularly due to its potential environmental benefit such as lower energy consumption and emission, its ability to be placed at lower ambient temperatures making it a suitable material for areas with short construction season. There are three warm mix asphalt (WMA) techniques are available; organic additive, foaming, and chemical additive. This study examined Sasobit, a micro crystalline wax which is an organic additive. The concentrations tested were 1.5, 2.5 and 3.5 percent of the base binder. A PG 64-22 asphalt binder from an Iranian refinery (Tehran refinery) was used as the base binder. Superpave binder... 

    Experimental Study of the Conversion of Heat to Electricity Using Movement of a Magnet Inside an Oscillating Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Moradi, Sepehr (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Heat sources with temperatures less than 100 °C are available in various processes in the form of waste heat and from renewable sources such as solar energy. One of the methods of gaining benefit from these ubiquitous and abundant heat sources is using thermal harvesters that convert low-temperature heat into electrical energy without the need for the power grid. Portable harvesters can be a reliable and low-cost option for providing stable energy for low-power electronic devices such as wireless sensors. Many studies have been conducted at the global level to design and develop efficient low-temperature heat harvesting mechanisms. However, each of them is associated with fundamental... 

    SnO2 Layer Curing as a Low Temperature Electron Transporting Layer in Perovskite Solar Cell

    , M.Sc. Thesis Sharif University of Technology Ghasemi, Fatemeh (Author) ; Taghavinia, Nima (Supervisor)
    Abstract
    Perovskite solar cells have attracted much attention due to their high photovoltaic performance. The excellent performance of perovskite solar cells is attributed to the superior electrical properties of each layer, including the electron-transporting layer, the light-absorbing layer, and the hole-transporting layer. The electron transport layer plays a key role in influencing the photovoltaic parameters of perovskite solar cells. SnO2 is considered as an ideal electron transport layer for perovskite solar cells due to its high carrier mobility, deep conduction band, suitable band gap and low temperature processing. Surface modification of SnO2 has significantly improved device performance... 

    CFD Modeling of PCCI Combustion for early Direct Injection of Diesel Fuel

    , M.Sc. Thesis Sharif University of Technology Ghofrani, Iraj (Author) ; Hosseini, Vahid (Supervisor) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    At today’s crowded world, the importance of automobile transportation is obvious for all. Due to energy crisis and air pollution problems, designing and manufacturing high-performance and low emission engines is very important. Because of high efficiency and low fuel consumption, diesel engines have attracted more attention. In addition to the mentioned advantages, diesel engine’s nitrogen oxide and particulate matter emissions are very high. So to limit these pollutants, strict standards was legislated by different countries and nations. Recently in the field of diesel engines emission reduction, low temperature combustion concept is proposed that can reduce nitrogen oxide and particulate... 

    Design and Optimization of Helium Recovery Process from Natural Gas

    , M.Sc. Thesis Sharif University of Technology Azimi, Sajad (Author) ; Afshin, Hossein (Supervisor) ; Farhanieh, Bijan (Co-Supervisor)
    Abstract
    Helium is a valuable substance that is widely used in industry and medicine because of its unique properties. Due to the increasing demand for helium in the global market, several helium extraction units have been launched in the world in recent years; Nevertheless, there is still a significant gap between projected global helium production capacity and demand. Today, natural gas is known as the main source of helium on the earth. The method of industrial extraction of helium from natural gas is cryogenic. Due to the low temperature of this process, relatively high power consumption is used to extract helium from natural gas. Therefore, the optimization of this process is of great... 

    On the Microstructure and Mechanical Properties of Aluminum after Low-temperature Multi-directional Forging

    , M.Sc. Thesis Sharif University of Technology Alyani, Ali (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    Severe Plastic Deformation (SPD) has been used as an effective approach to access fine grain (FG) and ultra-fine grain (UFG) materials.the Temperature of SPD is a dominant parameter to controlling ultimate properties. SPD at room-temperature and the high temperature was used widely in literature but the low-temperature process (sub-zero and cryogenic temperatures) was not used comparably. In this study, Low-temperature Multi-Directional Forging (LMDF) was applied on commercially pure aluminum and room-temperature MDF (RMDF) was attained for contrast temperature effects, and resulting in more fine grains. The grain refinement was attributed to the fragmentation process with a limitation in... 

    Performance and Rheological Characteristics of Modified Binders

    , M.Sc. Thesis Sharif University of Technology Tabatabaee, Hassan Ali (Author) ; Tabatabaee, Nader (Supervisor)
    Abstract
    The ever increasing usage of modified binders in road construction requires that the effect of different modifiers on the performance characteristics of the asphalt binder be determined through laboratory testing. The current Superpave protocol for performance grading asphalt binders has proven to be insufficient to properly characterize modified binders, thus researchers have searched for other testing methods to complement or possibly replace some of the Superpave tests. Most notable are the time sweep test for fatigue resistance, the multiple stress creep and recovery test (MSCR) for rutting resistance and the direct tension test (DTT) for low temperature cracking characteristics. In the... 

    Investigation and Accomplishment of CO2 Capturing with Solid Sorbent

    , M.Sc. Thesis Sharif University of Technology Shirdel, Elham (Author) ; Safekordi, Ali Akbar (Supervisor)
    Abstract
    Carbon dioxide emissions account for 80% of current greenhouse gas emissions that contribute to global warming; this majority stake held by carbon dioxide indicates that reduction in its release to the atmosphere and capturing emissions accomplished is imperative in conservation of human life in earth. The aim of this project is CO2 capturing from ambient air to decrease air pollution with uses building surface that is wide available surface, as basis of adsorbent. In this research, we select CaO as absorbent that it is proven good absorbent in high temperature for CO2. We studied this absorbent in low temperature and pressure. We experimented different weight amount of sorbent 2,3,4,5,6.5... 

    Experimental and Numerical Investigations of Reactivity Controlled Compression Ignition (RCCI)Combustion Fueled by Diesel and Natural Gas

    , Ph.D. Dissertation Sharif University of Technology Zarrinkolah, Mohammad Taghi (Author) ; Hosseini, Vahid (Supervisor) ; Shamloo, Amir (Supervisor)
    Abstract
    In this thesis, reactivity controlled compression ignition (RCCI) combustion fueled by diesel and natural gas is experimentally and numerically investigated. Natural gas as a fuel with low reactivity is injected into the intake manifold, and diesel as a fuel with high reactivity is injected directly into the combustion chamber. One of the main goals of this thesis is to experimentally examine the effect of important parameters on combustion phasing control, operational range extension, and pollutants. Natural gas is one of the important sources of energy in Iran and the world. Using natural gas in internal combustion engines can cause methane to slip into the atmosphere and intensify the... 

    Numerical and Experimental Analysis of Homogeneous Charge Compression Ignition with Normal Paraffins, Branched-chain Paraffins and Aromatics Combined Fuels

    , Ph.D. Dissertation Sharif University of Technology Reyhanian, Masoud (Author) ; Hosseini, Vahid (Supervisor) ; Mozafari, Ali Asghar (Supervisor)
    Abstract
    The purpose of this dissertation is to experimentally and numerically investigate the effect of molecular structure, composition, and physical and chemical properties of fuel on HCCI combustion. A well-equipped laboratory was set up to perform the required tests, capable of performing HCCI tests with different fuels. All tests used a single-cylinder diesel engine modified to operate in HCCI mode. Also, for numerical simulation, a chemical kinetic multi-zone model was developed to predict HCCI combustion behavior with appropriate accuracy. To investigate the effect of fuel chemical structure on HCCI combustion, three fuels, toluene, iso-octane and normal heptane, with entirely different... 

    Low Temperature Performance Evaluation of Modified Asphalt Binders

    , M.Sc. Thesis Sharif University of Technology Jahanbakhsh, Hamid (Author) ; Tabatabaei, Nader (Supervisor)
    Abstract
    Low temperature cracking is the most important type of asphalt pavement distress that occurs in cold climates. Up until the development of performance grading (PG) based binder specification, there was no irect indication of low temperature suitability of asphalt binders. PG specification was mainly developed for and validated by neat binders.
    With increased use of modified asphalt binders in recent years, some of the limitations and shortcomings of the original PG specifications have surfaced.Considering that low temperature cracking is a fracture failure, it was hypothesized that tests based on the fracture mechanics and fracture energy parameter can lead to better classification of... 

    Microstructure Investigation of Low Temperature Carburized Precipitation Hardenable 17-4 And 13-8 Mo Stainless Steels

    , M.Sc. Thesis Sharif University of Technology Baniasadi, Fazel (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    Recently, low temperature carburizing of stainless steels, especially austenitic stainless steels, have been considered by so many researchers. The improvement of tribological properties of which is so impressive so much so that such properties like hardness and wear resistance increase to manifold. In this research, low temperature carburizing was done on two kinds of precipitation hardenable stainless steels 17-4 and 13-8 Mo. After that, microstructural investigations were done on the carburized surfaces and in 5, 10, 20, 80, and 150 micrometer depths. Moreover, in each depth, in order to phase structure and tribological properties investigation, XRD and microhardness tests were done,... 

    Experimental and Numerical Study on Reactivity Controlled Compression Combustion Ignition Natural Gas-diesel

    , M.Sc. Thesis Sharif University of Technology Beladifard, Mohammad Hassan (Author) ; Hosseini, Vahid (Supervisor)
    Abstract
    According to limitation of fossil fuel consumption and cost, reduction of fuel consumption is very important in internal combustion engine. This requirement becomes twofold in light of the greenhouse effect of CO2 on global warming. Therefore, the use of engines with less fuel consumption is a global success. Diesel engines are among the most productive internal combustion engines. They have a lower fuel economy and carbon monoxide. But unfortunately, these engines respectively in rich and dilute blend have highly soot and nitrogen oxides. One of the methods in the development of the combustion process is the low temperature combustion method, which reduces the production of Knox due to low... 

    Investigation of the performance of modified organic Rankine cycles (ORCs) and modified trilateral flash cycles (TFCs) assisted by a solar pond

    , Article Solar Energy ; Volume 182 , 2019 , Pages 361-381 ; 0038092X (ISSN) Zeynali, A ; Akbari, A ; Khalilian, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Solar pond is a type of solar collector that stores solar energy in the form of heat. The solar pond can be used as a low-temperature heat source for electricity generation. In this paper, to find the most suitable power cycle for power generation from the solar pond, the performance of the Organic Rankine Cycle (ORC), Trilateral Flash Cycle (TFC) and their modified forms with an open feed liquid heater and an internal heat exchanger for different working fluids was investigated. Water was considered as the heat transfer fluid which transfers the stored heat from the solar pond to the working fluid of the cycle. The results indicate that in all cases, the energy and exergy efficiency of the... 

    Enhanced ORR catalytic activity of rare earth-doped Gd oxide ions in a CoFe2O4 cathode for low-temperature solid oxide fuel cells (LT-SOFCs)

    , Article Ceramics International ; Volume 48, Issue 19 , 2022 , Pages 28142-28153 ; 02728842 (ISSN) Yousaf, M ; Akbar, M ; Yousaf Shah, M. A. K ; Noor, A ; Lu, Y ; Akhtar, M. N ; Mushtaq, N ; Hu, E ; Yan, S ; Zhu, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The search for cathode materials with fast oxygen reduction reaction (ORR) catalytic activities and high ionic conductivity is the key obstacle to SOFCs commercialization and its operation at low temperatures. In order to search for a cathode with enhanced catalytic functionality, herein we report a single-phase CoFe2O4 (CFO) and CoGd0.2Fe1.80O4 (CGFO), which can be employed as an active cathode to improve electrocatalytic ORR functionalities at low temperature. It is found that CGFO having enriched oxygen vacancies exhibits the least polarization resistance (RP) of 0.42 Ωcm2 compared to the pure CFO which shows polarization resistance of 0.56 Ω cm2 under H2/air conditions. Furthermore,... 

    Physical properties of sputtered amorphous carbon coating

    , Article Journal of Alloys and Compounds ; Volume 513 , 2012 , Pages 135-138 ; 09258388 (ISSN) Yari, M ; Larijani, M. M ; Afshar, A ; Eshghabadi, M ; Shokouhy, A ; Sharif University of Technology
    Abstract
    In this study the effect of deposition temperature and thickness on the physical properties of carbon films deposited by magnetron sputtering PVD was investigated. The results of Raman spectra and grazing incidence XRD (GIXRD) patterns show that the graphitization increases by increasing the deposition temperature. There is a change in deposition mechanism at 400 °C from amorphous carbon deposition to nano-structured graphite deposition. Also by increasing substrate temperature the electrical resistance of carbon films reduces significantly up to 300 °C and then remains largely constant. High intrinsic compressive stress in low temperature deposited carbon films causes cracks and... 

    Thermodynamic analysis of application of organic Rankine cycle for heat recovery from an integrated DIR-MCFC with pre-reformer

    , Article Energy Conversion and Management ; Volume 67 , 2013 , Pages 197-207 ; 01968904 (ISSN) Vatani, A ; Khazaeli, A ; Roshandel, R ; Panjeshahi, M. H ; Sharif University of Technology
    2013
    Abstract
    This work deals with waste heat recovery from a proposed direct internal reforming molten carbonate fuel cell (DIR-MCFC), including an integrated pre-reformer. In this regard, some advantages are attainable over exhaust gas recycling. For instance, due to low temperature in the pre-reformer, carbon deposition and coke formation resulting from higher hydrocarbons can be eliminated. In this study, the cathode outlet provides the heat requirement for the pre-reforming process. After partial heat recovery from the cathode outlet, the stream still has a considerable energy and exergy (352.55 °C and 83.687 kW respectively). This study investigates waste heat recovery from the proposed DIR-MCFC,... 

    Collective movement and thermal stability of fullerene clusters on the graphene layer

    , Article Physical Chemistry Chemical Physics ; Volume 24, Issue 19 , 2022 , Pages 11770-11781 ; 14639076 (ISSN) Vaezi, M ; Nejat Pishkenari, H ; Ejtehadi, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Understanding the motion characteristics of fullerene clusters on the graphene surface is critical for designing surface manipulation systems. Toward this purpose, using the molecular dynamics method, we evaluated six clusters of fullerenes including 1, 2, 3, 5, 10, and 25 molecules on the graphene surface, in the temperature range of 25 to 500 K. First, the surface motion of clusters is studied at 200 K and lower temperatures, in which fullerenes remain as a single group. The trajectories of the motion as well as the diffusion coefficients indicate the reduction of surface mobility as a response to the increase of the fullerene number. The clusters show normal diffusion at the temperature... 

    Effect of severe shot peening and ultra-low temperature plasma nitriding on Ti-6Al-4V alloy

    , Article Vacuum ; Volume 150 , April , 2018 , Pages 69-78 ; 0042207X (ISSN) Unal, O ; Maleki, E ; Varol, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, the fatigue behavior of Ti-6Al-4V alloy is tend to be improved by severe plastic deformation via shot peening and plasma nitriding. Shot peening with sub-branches: Conventional shot peening (A12-14), severe shot peening (A28–30 and A34-36) and repeening (N6-8) are exposed. Besides plasma nitriding is implemented at 500 °C, 550 °C and 600 °C with the durations of 4, 8 and 16 h. Due to utilization of shot peening as prior severe plastic deformation during diffusion of nitrogen, two methods are applied in sequence. Severe shot peening forms ultra-fine crystals and oriented grains by disintegrating of α and β phases just below the surface and increases surface roughness. Plasma... 

    Plasma nitriding of gradient structured AISI 304 at low temperature: Shot peening as a catalyst treatment

    , Article Vacuum ; Volume 164 , 2019 , Pages 194-197 ; 0042207X (ISSN) Unal, O ; Maleki, E ; Varol, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study involves the capability of severe shot peening (SSP) as a catalyst intake for plasma nitriding process and the probability of reducing the requirement of thermal energy individually on the diffusion of interstitial atoms. To this end, combination of mechanical-thermal energy is run with pure thermal plasma assisted energy. Therefore, SSP is exposed to AISI 304 austenitic stainless steel as a former treatment and gradient structured surface (nanograined zone, ultrafine grain martensite-twin intersections zone and twin densed zone) is created. Then, plasma nitriding at 400 0 C-4h and 475 0 C-2h temperature-duration conditions. The condition of 475 0 C-2h provides the requirements of...