Loading...
Search for: magnetite-nanoparticles
0.009 seconds
Total 60 records

    The Study of Function of Lipase Biocatalyst Immobilized on Silica Nanoparticles Used for Biodiesel Production

    , M.Sc. Thesis Sharif University of Technology Kalantari, Mohammad (Author) ; Kazemini, Mohammad (Supervisor) ; Arpanaei, Ayyoob (Supervisor) ; Tabandeh, Fatemeh (Co-Advisor)
    Abstract
    Superparamagnetic core/shell nonporous (S1) and core/shell/shell mesoporous (S2 and S3) nanocomposite magnetite/silica particles with a magnetite cluster core of 130±30 nm, a nonporous silica shell of 90±10 nm thickness, and a mesoporous silica shell of 70±15 nm thickness were prepared thorough a simple method. Mesoporous particles were prepared with two BJH pore sizes (2.44 for S2 and 3.76 nm for S3 particles, respectively). The fabricated S1, S2 and S3 particles present high saturation magnetization values of 20, 13 and 17 emu/g, respectively. As a biological application, the lipase from Pseudomonas cepacia was successfully immobilized onto the amino-functionalized nanocomposite particles... 

    Preparation of Metal Nanoparticles/Ionic Liquid Composites and Investigation of Their Catalytic Activity

    , M.Sc. Thesis Sharif University of Technology Gharegozloo, Nazanin (Author) ; Gholami, Mohammad Reza (Supervisor) ; Salari, Hadi (Co-Advisor)
    Abstract
    In this research Fe3O4 magnetic nanoparticles were prepared. To protect against oxidation, a shell of SiO2 was deposited on Fe3O4. Graphene oxide was prepared by the modified Hummer method and supported on the Fe3O4@SiO2 core-shell. Then, ionic liquid layer was impregnated on it. Afterward, PtAu nano alloy were synthesized on the surface of nanocomposite with the different molar ration including 100:0, 75:25, 50:50, 25:75 and 0:100. The as-prepared nanocomposite was characterized by SEM, XRD, and FT-IR analytical methods.For investigation of kinetically activity of catalysts, reduction of 4-nitrophenol with NaBH4 as reducer was used. The adsorption in different times was obtained by UV-vis... 

    A Facile, Two-step Synthesis and Characterization of Fe3O4-Lcysteine- Graphene Quantum Dots as a Multifunctional Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Alaghmand Fard, Amir Hossein (Author) ; Madah Hosseini, Hamid Reza (Supervisor)
    Abstract
    In this research, a facile, two-step synthesis was reported for 34-LCysteine- nanocomposites. The first step comprises the preparation of LCysteine functionalized magnetic nanoparticles (MNPs) core-shell structures via co-precipitation method. In the second step, graphene quantum dots (GQDs), which were synthesized by citric acid carbonization, added to the functionalized MNPs and finally refluxed at the appropriate time and temperature. LCysteine as a biocompatible, natural amino acid were used to link MNPs with GQDs. This nanocomposite was characterized by various techniques. XRD and FT-IR were used to investigate the formation of MNPs and LCysteine existence on the MNPs surface. XPS... 

    , M.Sc. Thesis Sharif University of Technology Azimi, Saloomeh (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    A biocompatible ferrofluid have been prepared by co-precipitation of FeCl2.4H2O and FeCl3.6H2O under ultrasonic irradiation and with NaOH as alkaline agent. Also cystein was used as capping agent in the solution. Magnetic properties of the produced ferrofluid then determined by VSM test and magnetite nanoparticles were characterized by XRD and TEM techniques. Results indicate the presence of a biocompatible superparamagnetic ferrofluid including magnetite nanoparticles with particle size ranging under 15 nm. The effect of ultrasonic irradiation on presence of a sharp particle size distribution then denoted by comparing the condition with production without ultrasonic irradiation  

    Experimental Study of Biological Synthesis, Stabilization and Delivery of the Recombinant Protein of Chondroitinase

    , Ph.D. Dissertation Sharif University of Technology Askaripour, Hossein (Author) ; Vossoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Supervisor) ; Khajeh, Khosro (Supervisor)
    Abstract
    In this research, immobilization method was employed to increase the thermal stability of Chondroitinase ABC I (cABC I) enzyme. In first step, magnetite nanoparticle (Fe3O4) was selected as a support and cABC I enzyme was attached via the adsorption method. The results showed that pH=6.5, temperature 15 ˚C, enzyme-to-support mass ratio 0.75, and incubation time 4.5 hr were the appropriate conditions for immobilizing cABC I enzyme on Fe3O4 nanoparticle. It was also found that the optimum pH for free and immobilized enzymes was 7.6 and 8.0, respectively. The maximum activity of free enzyme was obtained at 25 ˚C, whereas the activity of immobilized enzyme was almost constant in the temperature... 

    Factors Affecting the Efficiency of Ferrite Process for Removal of Heavy Metals (Case study of Chromium and Nickel)

    , M.Sc. Thesis Sharif University of Technology Abdolshahinejad, Sara (Author) ; Borgheei, Mahdi (Supervisor)
    Abstract
    Heavy metals, present in many industrial wastewaters, are considered as major pollutants of environment. Various methods to removal heavy metals effectively from effluents have been used in industry, yet more efficient and economical methods are required. Magnetic iron nanoparticles are known for their superior adsorption, ion exchange and electro-static forces characteristics.The aim of this study was to evaluate the efficiency of magnetic nanoparticles for removal of hexavalent chromium (VI) and Divalent nickel from wastewater and the parameters that influence the removal.The magnetite nanoparticles were prepared by co-precipitation method where produced Fe3O4 nanoparticle’s average size... 

    Microemulsion Synthesize of Fe3O4/TiO2 Core-Shell Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Sonbolestan, Hosein (Author) ; Madaah Hoseini, Hamid Reza (Supervisor)
    Abstract
    In this study magnetite nanoparticles were synthesized by microemulsion and were coated with TiO2 by a precipitation technique. The synthesize process were done under fixed molar ratio of various constituents of microemulsion and molar ratio of water to oil. Results of X-ray diffraction spectroscopy (XRD) showed that the uncoated nanoparticles were consisted of magnetite as the major phase and no other detectable phases such as pure iron or hematite were found. Field emission scanning electron microscopy (FE-SEM) results showed that the synthesized nanoparticles small size and narrow particle size distribution. For TiO2 coating process the effect of TBOT concentration, water concentration,... 

    Effect of Coprecipitation and Hydrothermal Parameters on the Properties of Ferrofluids Based on Magnetite Nanoparticles as MRI Contrast Agent

    , Ph.D. Dissertation Sharif University of Technology Ahmadi, Reza (Author) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Ferrofluids are special stable suspensions of magnetic nanoparticles dispersed in liquid phase. These materials have numerous biological applications such as drug delivery, magnetic hyperthermia and magnetic resonance imaging due to their special magnetic properties and fluidity. Particle size and magnetic properties of ferrofluids have an important role in these applications. In this work, magnetite-based ferrofluids have been synthesized via coprecipitation and hydrothermal methods. In the coprecipitation process, cysteine and dextran surfactants have been used as ferrofluid stabilizer and effect of synthesize temperature, time, pH and surfactant concentration have been investigated on... 

    Synthesis and Characterization of Dextran Based Magnetic Nanogels as a Gene Delivery Vector and Investigating its Gene Therapy Efficiency

    , M.Sc. Thesis Sharif University of Technology Azadpour, Behnam (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Arefian, Ehsan (Supervisor)
    Abstract
    The use of magnetic nanoparticles modified with proper surface agent and the ability of controlling by magnetic field, that can induce colloidal stability, is considered as a vector to transfer DNA plasmid, or pDNA in short, in the field of gene therapy. In thiss research, pH-responsive dextran-based magnetic nanogels (dextMNGs) were synthesized via inverse mini-emulsion method. Fourier transformation infrared spectroscopy (FTIR) showed that magnetite nanoparticles (MNPs) were successfully modified with arginine and had amine terminals. FTIR, also, proved that aldehyded dextran was crosslinked by arginine modified magnetite nanoparticles (RMNPs) via pH sensitive imine bonds. X-ray... 

    Mass-transfer enhancement in single drop extraction in the presence of magnetic nanoparticles and magnetic field

    , Article AIChE Journal ; Volume 62, Issue 12 , 2016 , Pages 4466-4479 ; 00011541 (ISSN) Vahedi, A ; Molaei Dehkordi, A ; Fadaei, F ; Sharif University of Technology
    John Wiley and Sons Inc  2016
    Abstract
    Magnetite nanoparticles with an average particle size of 28.8 nm were synthesized, coated with oleic acid, and characterized using various techniques such as DLS, FT-IR, SEM, XRD, VSM, and UV-Vis analysis. A nanofluid consisting of synthesized nanoparticles and 5 wt % acetic acid in toluene as the dispersed phase was prepared and used in the chemical test system, Toluene-Acetic Acid-Water, for the single drop extraction in the presence and absence of an external oscillating magnetic field. Influences of various operating and design parameters such as nanoparticle concentration, drop diameter, and the applied current and frequency on the overall mass-transfer coefficients for the... 

    Synthesis and characterization of ultrasound assisted "graphene oxide-magnetite" hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions

    , Article Applied Surface Science ; Volume 353 , 2015 , Pages 350-362 ; 01694332 (ISSN) Tayyebi, A ; Outokesh, M ; Moradi, S ; Doram, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Magnetite nanoparticles with a size distribution of 15-21 nm were synthesized and decorated onto surface of graphene oxide by ultrasound assisted precipitation. Size and size distribution of the obtained M-GO hybrid were appreciably finer than the hybrids prepared by stirring method. M-GO is a superparamagnetic material with saturation magnetization of 31 emu g-1. The Langevin equation was successfully applied for estimation of size of Fe3O4 nanoparticles in M-GO hybrid, with maximum error of 17.5%. The study put forward a formation mechanism for M-GO, based on instrumental analyses. Adsorption isotherms of Sr2+ and Co2+ ions, which were fitted by Langmuir monolayer... 

    Supercritical synthesis of a magnetite-reduced graphene oxide hybrid with enhanced adsorption properties toward cobalt & strontium ions

    , Article RSC Advances ; Volume 6, Issue 17 , 2016 , Pages 13898-13913 ; 20462069 (ISSN) Tayyebi, A ; Outokesh, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    The current study presents a supercritical synthesis of magnetite-reduced graphene oxide (M-RGO) in methanol media, in which Fe3O4 nanoparticles are simultaneously formed, surface modified and decorated on the surface of the reduced graphene oxide. Simulations using density functional theory, which were performed using the M06-2x/cc-pVDZ level of theory, indicate that upon adsorption of a Fe3O4 cluster on the graphene, the overall charge on the graphene surface becomes about -0.0236e, indicating charge transfer from the Fe3O4 cluster to the graphene surface. Instrumental and chemical analyses exhibited the formation of strong bonds between Fe3O4 and graphene, through C-O-Fe and C-Fe bridges.... 

    Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Shamloo, A ; Naghdloo, A ; Besanjideh, M ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Isolation of rare cancer cells is one of the important and valuable stages of cancer research. Regarding the rarity of cancer cells in blood samples, it is important to invent an efficient separation device for cell enrichment. In this study, two centrifugal microfluidic devices were designed and fabricated for the isolation of rare cancer cells. The first design (passive plan) employs a contraction–expansion array (CEA) microchannel which is connected to a bifurcation region. This device is able to isolate the target cells through inertial effects and bifurcation law. The second design (hybrid plan) also utilizes a CEA microchannel, but instead of using the bifurcation region, it is... 

    Fabrication of a modified electrode based on Fe3 O4 NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA

    , Article Bioelectrochemistry ; Volume 86 , 2012 , Pages 78-86 ; 15675394 (ISSN) Shahrokhian, S ; Rastgar, S ; Amini, M. K ; Adeli, M ; Sharif University of Technology
    Abstract
    Multi-walled carbon nanotubes decorated with Fe 3O 4 nanoparticles (Fe 3O 4NPs/MWCNT) were prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electro-oxidation of adenine and guanine on the modified electrode were investigated by linear sweep voltammetry. The results indicate a remarkable increase in the oxidation peak currents together with negative shift in the oxidation peak potentials for both adenine and guanine, in comparison to the bare glassy carbon electrode (GCE). The surface morphology and nature of the composite film deposited on GCE were characterized by transmission electron microscopy, atomic force microscopy,... 

    Preconcentration and determination of pantoprazole by solid-phase extraction coupled with spectrophotometry using iron oxide nanoparticles modified with cetyltrimethylammonium bromide

    , Article Nano Biomedicine and Engineering ; Volume 7, Issue 3 , 2015 , Pages 102-110 ; 21505578 (ISSN) Sayyahmanesh, M ; Naghian, E ; Sahebi, H ; Asgari, S ; Sharif University of Technology
    Open Access House of Science and Technology  2015
    Abstract
    Solid phase extraction coupled with spectrophotometric detection was applied to trace amounts of Pantoprazole (PP) drug using Cetyltrimethylammonium bromide coated-iron oxide magnetite nanoparticles CTAB@Fe3O4 MNPs. After characterization of the prepared nano-adsorbents, experimental parameters affecting the extraction efficiency of the developed method were optimized. The results obtained showed that this proposed approach is applicable in concentrations ranging from 0.1 to 1.5 μg/ml (R2 = 0.9958) indicating that follows Beer's-Lambert law. The limit of detection and the limit of quantification calculated to be 0.014 and 0.04 μg/ml, respectively. The repeatability of the proposed method was... 

    Effect of synthesis temperature of magnetic–fluorescent nanoparticles on properties and cellular imaging

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 30, Issue 11 , 2020 , Pages 4597-4605 Sahebalzamani, H ; Mehrani, K ; Madaah Hosseini, H. R ; Zare, K ; Sharif University of Technology
    Springer  2020
    Abstract
    The excellent photoluminescent properties of Fe3O4-graphene quantum dots (Fe3O4/GQD) nanoparticles prepared at 30 and 90 °C have made them as promising optical probes for imaging. Herein, the cytotoxicity of GQD and Fe3O4/GQD nanoparticles in L929 cells was investigated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide] assay. The cellular apoptosis or necrosis was then evaluated by flow cytometry analysis. The Fe3O4/GQD nanoparticles were characterized by transmission electron microscopy (TEM), Raman spectroscopy (Raman), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence (PL). Characterization results obtained, clearly show that Fe3O4/GQD nanoparticles... 

    Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta

    , Article Bioresource Technology ; Volume 306 , 2020 Sadeghzadeh, S ; Ghobadi Nejad, Z ; Ghasemi, S ; Khafaji, M ; Borghei, S. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Enzymatic removal of Bisphenol A (BPA), acknowledged as an environmentally friendly approach, is a promising method to deal with hard degradable contaminants. However, the application of “enzymatic treatment” has been limited due to lower operational stability and practical difficulties associated with recovery and recycling. Enzyme immobilization is an innovative approach which circumvents these drawbacks. In this study, laccase from Trametes hirsuta was used for BPA removal. Amino-functionalized magnetic Fe3O4 nanoparticles were synthesized via the co-precipitation method followed by surface modification with (3-aminopropyl)trimethoxysilane (APTMS). The as-prepared nanoparticles were... 

    Experimental study on heat transfer augmentation of graphene based ferrofluids in presence of magnetic field

    , Article Applied Thermal Engineering ; Volume 114 , 2017 , Pages 415-427 ; 13594311 (ISSN) Sadeghinezhad, E ; Mehrali, M ; Akhiani, A. R ; Tahan Latibari, S ; Dolatshahi Pirouz, A ; Metselaar, H. S. C ; Mehrali, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The effect of a permanent magnetic field on the heat transfer characteristics of hybrid graphene-magnetite nanofluids (hybrid nanofluid) under forced laminar flow was experimentally investigated. For this purpose, a reduced graphene oxide-Fe3O4 was synthesized by using two-dimensional (2D) graphene oxide, iron salts and tannic acid as the reductant and stabilizer. Graphene sheets acted as the supporting materials to enhance the stability and thermal properties of magnetite nanoparticles. The thermo-physical and magnetic properties of this hybrid nanofluid have been widely characterized and it shows that the thermal conductivity increased up to 11%. The hybrid nanofluid behaves as a Newtonian... 

    Synthesis and characterization of magnetic hybrid nanomaterials via RAFT polymerization: A pH sensitive drug delivery system

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 174 , 2019 , Pages 153-160 ; 09277765 (ISSN) Pourjavadi, A ; Kohestanian, M ; Shirzad, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Herein, a facile and versatile method for the synthesis of a novel magnetic nanocarrier via surface- initiated reversible addition-fragmentation chain transfer (RAFT) polymerization is introduced. At first, RAFT agent was successfully attached to the surface of Fe 3 O 4 nanoparticles and, then, poly (glycidyl methacrylate) (PGMA) chains were grown and anchored onto the surface of Fe 3 O 4 nanoparticles. At the end, hydrazine (Hy) groups were introduced to the PGMA chains via reaction between epoxy rings and hydrazine molecules. Doxorubicin (DOX) was covalently conjugated to the prepared nanocarrier (Fe 3 O 4 @PGMA@Hy) through a hydrazone linkage. The in vitro drug release of Fe 3 O 4... 

    pH and thermal dual-responsive poly(NIPAM-co-GMA)-coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivery

    , Article Materials Science and Engineering C ; Volume 108 , 2020 Pourjavadi, A ; Kohestanian, M ; Streb, C ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Herein, a novel type of multifunctional magnetic nanoparticles with dual thermal and pH-responsive behavior was fabricated as the carrier for delivery of doxorubicin (DOX). Fe3O4@SiO2 magnetic nanoparticles, were grafted with polymer brushes consisting of poly (NIPAM-co-GMA) (PNG) chains via surface initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization. The polymer brushes were then modified with hydrazine groups as DOX binding sites. The prepared multifunctional magnetic nanoparticles were characterized by FT-IR, 1H NMR, XPS, TGA, DLS, VSM, GPC, TEM, and XRD analysis. The in vitro drug release of the multifunctional magnetic nanoparticles was examined at 37 °C...