Loading...
Search for: magnetos
0.006 seconds
Total 50 records

    Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer

    , Article Journal of Materials Chemistry B ; Vol. 2, Issue. 21 , 2014 , p. 3306-3314 Akhavan, O ; Meidanchi, A ; Ghaderi, E ; Khoei, S ; Sharif University of Technology
    Abstract
    A magneto-photothermal therapy for cancer (in vitro photothermal therapy of prostate cancer cells and in vivo photothermal therapy of human glioblastoma tumors in the presence of an external magnetic field) was developed using superparamagnetic zinc ferrite spinel (ZnFe2O4)-reduced graphene oxide (rGO) nanostructures (with various graphene contents). In vitro application of a low concentration (10 μg mL-1) of the ZnFe 2O4-rGO (20 wt%) nanostructures under a short time period (∼1 min) of near-infrared (NIR) irradiation (with a laser power of 7.5 W cm-2) resulted in an excellent destruction of the prostate cancer cells, in the presence of a magnetic field (∼1 Tesla) used for localizing the... 

    Tuning of random lasers by means of external magnetic fields based on the Voigt effect

    , Article Optics and Laser Technology ; Volume 47 , April , 2013 , Pages 121-126 ; 00303992 (ISSN) Ghasempour Ardakani, A ; Mahdavi, S. M ; Bahrampour, A. R ; Sharif University of Technology
    2013
    Abstract
    It has been proposed that emission spectrum of random lasers with magnetically active semiconductor constituents can be made tunable by external magnetic fields. By employing the FDTD method, the spectral intensity and spatial distribution of electric field are calculated in the presence of an external magnetic field. It is numerically shown that due to the magneto-optical Voigt effect, the emission spectrum of a semiconductor-based random laser can be made tunable by adjusting the external magnetic field. The effect of magnetic field on the localization length of the laser modes is investigated. It is also shown that the spatial distribution of electric field exhibited remarkable... 

    Experimental study of a novel Magneto Mercury Reciprocating (MMR) micropump, fabrication and operation

    , Article Sensors and Actuators, A: Physical ; Volume 194 , 2013 , Pages 277-284 ; 09244247 (ISSN) Karmozdi, M ; Salari, A ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    Today, MEMS have wide applications in modern technologies. Magneto hydro dynamic (MHD) micropumps play an important role in the MEMS industry and have been thoroughly studied in the recent years. In this study, the idea of classic reciprocating micropumps was combined with magneto hydro dynamics (MHD) to develop a novel Magneto Mercury Reciprocating (MMR) micropump. To attain this goal, the Lorentz force, as the actuation mechanism, was used to move a conductive liquid (mercury) slug in a reciprocating manner in order to suck the working fluid (air) from the inlet and pump it to the outlet. The performance of the fabricated MMR micropump was examined in terms of parameters such as pressure... 

    Neuro-fuzzy control strategy for an offshore steel jacket platform subjected to wave-induced forces using magnetorheological dampers

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 4 , 2012 , Pages 1179-1196 ; 1738494X (ISSN) Sarrafan, A ; Zareh, S. H ; Khayyat, A. A. A ; Zabihollah, A ; Sharif University of Technology
    2012
    Abstract
    Magnetorheological (MR) damper is a prominent semi-active control device to vibrate mitigation of structures. Due to the inherent non-linear nature of MR damper, an intelligent non-linear neuro-fuzzy control strategy is designed to control wave-induced vibration of an offshore steel jacket platform equipped with MR dampers. In the proposed control system, a dynamic-feedback neural network is adapted to model non-linear dynamic system, and the fuzzy logic controller is used to determine the control forces of MR dampers. By use of two feedforward neural networks required voltages and actual MR damper forces are obtained, in which the first neural network and the second one acts as the inverse... 

    Prosthetic knee using of hybrid concept of magnetorheological brake with a T-shaped drum

    , Article 2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015, 2 August 2015 through 5 August 2015 ; Aug , 2015 , Pages 721-726 ; 9781479970964 (ISBN) Sayyaadi, H ; Zareh, S. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This paper focuses on developing a new configuration on magnetorheological (MR) brake damper as prosthetic knee. Knee uses magnetic fields to vary the viscosity of the MR fluid, and thereby its flexion resistance. Exerted transmissibility torque of the knee greatly depends on the magnetic field intensity in the MR fluid. In this study a rotary damper using MR fluid is addressed in which a single rotary disc will act as a brake while MR fluid is activated by magnetic field in different walking gait. The main objective of this study is to investigate a prosthetic knee with one activating rotary disc to accomplish necessary braking torque in walking gait via implementing of Newton's equation of... 

    Central Difference Finite Volume Lattice Boltzmann Method for Simulation of Incompressible Electro-Magneto-Hydrodanamic Flows

    , M.Sc. Thesis Sharif University of Technology Taheri, Sina (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the simulation of incompressible Electro-Magneto-hydrodynamic flows is performed using a finite volume lattice Boltzmann method (FVLBM). The Boltzmann transport equation is solved using a cell-centered finite volume method on structured meshes. A central difference scheme is used to discretize the spatial derivatives and the fourth-order numerical dissipation term is added to stabilize the solution. To discretize the temporal derivative, the fourth-order Runge-Kutta time stepping scheme is applied. The standard collision-streaming lattice Boltzmann method has been used to simulate EMHD flows in the literature, however, it has several deficiencies such as the... 

    Semi-active vibration control of a marine structure with magnetorheological (MR) dampers utilizing LQR method

    , Article Proceedings of the ASME Design Engineering Technical Conference, 15 August 2010 through 18 August 2010 ; Volume 5 , 2010 , Pages 651-659 ; 9780791844137 (ISBN) Daneshfard, M. S ; Zabihollah, A ; Sharif University of Technology
    Abstract
    The developing of technology has discovered new materials which have been applied to improve the performance of structures. The researchers have recently increased the attention in controllable fluids and its applications. Magnetorheological (MR) dampers are devices that employ rheological fluids to modify their mechanical properties. Their mechanical simplicity, high dynamic range, lower power requirements, large force capacity, robustness and safe manner operation in case of fail have made them attractive devices to passive, semi-active and active control in mechatronic, civil, aerospace and automotive applications. The characteristics of the MR damper change when the rheological fluid is... 

    Semi active vibration control of a passenger car using magnetorheological shock absorber

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, Istanbul, 12 July 2010 through 14 July 2010 ; Volume 3 , 2010 , Pages 21-27 ; 9780791849170 (ISBN) Fellah Jahromi, A ; Zabihollah, A ; Sharif University of Technology
    2010
    Abstract
    A novel semi-active control system for suspension systems of passenger car using Magnetorheological (MR) damper is introduced. The suspension system is considered as a mass-spring model with an eight-degrees-of-freedom, a passive damper and an active damper. The semi-active vibration control is designed to reduce the amplitude of automotive vibration caused by the alteration of road profile. The control mechanism is designed based on the optimal control algorithm, Linear Quadratic Regulator (LQR). In this system, the damping coefficient of the shock absorber changes actively trough inducing magnetic field. It is observed that utilizing the present control algorithm may significantly reduce... 

    Layerwise theory in modeling of magnetorheological laminated beams and identification of magnetorheological fluid

    , Article Mechanics Research Communications ; Volume 77 , 2016 , Pages 50-59 ; 00936413 (ISSN) Naji, J ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In recent years, structures integrated with magnetorheological (MR) fluid have been considered for their tunable dynamic characteristics. Shear modulus of MR layer in composite structure is dramatically lower than the elastic layers, leading to high shear deformation inside the MR layer, thus classical theories are not accurate enough to predict the dynamic behavior of such structures. In present study a layerwise displacement theory has been utilized to predict a more accurate deformation for MR-composite beam and equation of motions derived using finite element model (FEM). ASTM E756-98 was employed to evaluate the complex shear modulus of MR fluid. By experimental test a practical... 

    Aeroelastic characteristics of magneto-rheological fluid sandwich beams in supersonic airflow

    , Article Composite Structures ; Volume 143 , 2016 , Pages 93-102 ; 02638223 (ISSN) Asgari, M ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Supersonic aeroelastic instability of a three-layered sandwich beam of rectangular cross section with an adaptive magneto-rheological fluid (MRF) core layer is investigated. The panel is excited by an airflow along it's longitudinal direction. The problem formulation is based on classical beam theory for the face layers, magnetic field dependent complex modulus approach for viscoelastic material model and the linear first-order piston theory for aerodynamic pressure. The classical Hamilton's principle and the assumed mode method are used to set up the equations of motion. The validity of the derived formulation is confirmed through comparison with the available results in the literature. The... 

    Shear horizontal surface acoustic waves in functionally graded magneto-electro-elastic half-space

    , Article Journal of Engineering Mathematics ; Volume 97, Issue 1 , 2016 , Pages 83-100 ; 00220833 (ISSN) Shodja, H. M ; Eskandari, S ; Eskandari, M ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    The propagation of shear horizontal surface acoustic waves (SHSAWs) in an inhomogeneous magneto-electro-elastic (MEE) half-space with 6-mm symmetry is studied. By virtue of both the direct approach and Stroh-formalism, the dispersion relations corresponding to two general cases of material properties variation are obtained. In the first case, it is assumed that all material properties involving the MEE properties and density vary similarly in depth, whereas, the second case considers identical variation for the MEE properties, which differs from the variation of the density. The non-dispersive SHSAW velocities pertinent to the homogeneous MEE media are obtained under eight different surface... 

    A SPH solver for simulating paramagnetic solid fluid interaction in the presence of an external magnetic field

    , Article Applied Mathematical Modelling ; Volume 40, Issue 7-8 , 2016 , Pages 4341-4369 ; 0307904X (ISSN) Hashemi, M. R ; Manzari, M. T ; Fatehi, R ; Sharif University of Technology
    Elsevier Inc  2016
    Abstract
    The Smoothed Particle Hydrodynamics (SPH) method is extended to solve magnetostatic problems involving magnetically interacting solid bodies. In order to deal with the jump in the magnetic permeability at a fluid-solid interface, a consistent SPH scheme is utilized and a modified formulation is proposed to calculate the magnetic force density along the interface. The results of the magnetostatic solver are verified against those of the finite element method. The governing fluid flow equations are discretized using the same SPH scheme, developing an efficient method for simulating the motion of paramagnetic solid bodies in a fluid flow. The proposed algorithm is applied to a benchmark problem... 

    Attenuation of random vibration in plates

    , Article AES-ATEMA International Conference Series - Advances and Trends in Engineering Materials and their Applications, 1 September 2009 through 4 September 2009, Hamburg ; 2009 , Pages 57-63 ; 19243642 (ISSN) ; 9780978047962 (ISBN) Jolghazi, S ; Mehdigholi, H ; Behzad, M ; Sharif University of Technology
    Abstract
    This paper is a study on control of vibration of plate subjected to random vibration loading using magnetorheological (MR) dampers. Some key issues, i.e. model reduction, modeling of the MR dampers and their applications in vibration control of plates, are addressed in this work. MR dampers are semi-active devices that use MR fluids to produce a controllable damping with low power requirement. In this paper, first, a model reduction method for preparing a reduce order model (ROM) is presented. The method uses an optimal model truncation method which in it the ROM to be constructed such that it will provide the same frequency response characteristics as the original full model within the... 

    Vibration analysis of a rotating magnetorheological tapered sandwich beam

    , Article International Journal of Mechanical Sciences ; Volume 122 , 2017 , Pages 308-317 ; 00207403 (ISSN) Navazi, H. M ; Bornassi, S ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    This paper investigates the free vibration analysis of a doubly tapered magnetorheological rotating sandwich beam based on the Euler-Bernoulli theory. The beam is made of a magnetorheological elastomer core sandwiched between two elastic layers. Through energy approach the kinetic and potential energies of the system are written and using the Lagrange equation the discretized form of the governing equation is derived based on the Ritz method. The free vibration analysis is carried out to obtain the natural frequency and the corresponding loss factor of the beam. Finally, after validating the formulation in order to provide a deep insight the effects of different parameters on the free... 

    Experimental works on dynamic behavior of laminated composite beam incorporated with magneto-rheological fluid under random excitation

    , Article ACM International Conference Proceeding Series, 8 February 2017 through 12 February 2017 ; Volume Part F128050 , 2017 , Pages 156-161 ; 9781450352802 (ISBN) Momeni, S ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Association for Computing Machinery  2017
    Abstract
    Laminated composite structures are widely being used in modern industries particularly robot arms, aerospace and wind turbine blades where the structures mainly exposed to harsh random vibration and in turn, leads to unpredicted failure. Adding Magneto-rheological (MR) fluids in such structures may significantly improve their dynamic response. In the present work, the vibration response of laminated composite beams filled with MR fluids (MR laminated beam) under random loading has been investigated using experimental as well as simulation approaches. Finite Element Model (FEM) has been utilized to simulate the vibration response under random loading. An in-house set-up has been designed to... 

    A three-dimensional constitutive model for magnetic shape memory alloys under magneto-mechanical loadings

    , Article Smart Materials and Structures ; Volume 26, Issue 1 , 2017 ; 09641726 (ISSN) Mousavi, M. R ; Arghavani, J ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    This paper presents a three-dimensional phenomenological constitutive model for magnetic shape memory alloys (MSMAs), developed within the framework of irreversible continuum thermodynamics. To this end, a proper set of internal variables is introduced to reflect the microstructural consequences on the material macroscopic behavior. Moreover, a stress-dependent thermodynamic force threshold for variant reorientation is introduced which improves the model accuracy. Preassumed kinetic equations for magnetic domain volume fractions, decoupled equations for magnetization unit vectors and appropriate presentation of the limit function for martensite variant reorientation lead to a simple... 

    Remote trice light, temperature, and pH-actuation of switchable magneto-plasmonic nanocarriers for combinational photothermal and controlled/targeted chemotherapies

    , Article Journal of Pharmaceutical Sciences ; Volume 107, Issue 12 , 2018 , Pages 3123-3133 ; 00223549 (ISSN) Hadilou, N ; Khoshgenab, A. N ; Amoli Diva, M ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Three magneto-plasmonic nanohybrids were synthesized using Au- and Ag-coated Fe3O4 nanoparticles (NPs)-modified dual pH- and temperature-responsive triblock copolymer of poly (butyl methacrylate-co-acrylamide-co-methacrylic acid) to serve as drug carriers with potential of using in both photothermal and controlled/targeted chemotherapies. The internal superparamagnetic core gives the carriers targeted-delivery characteristics, and surface plasmon resonance–based noble metallic Au/Ag shells give them on-demand photothermal and photo-triggering release properties. To investigate the effect of coating method on the targeting property of synthesized carriers, Au NPs were attached to the magnetic... 

    Aeroelastic instability analysis of a turbomachinery cascade with magnetorheological elastomer based adaptive blades

    , Article Thin-Walled Structures ; Volume 130 , 2018 , Pages 71-84 ; 02638231 (ISSN) Bornassi, S ; Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Torsional aeroelastic analysis of a turbomachinery cascade comprised of three-layered sandwich blades embedded with Magnetorheological Elastomer (MRE) core layer is carried out in this paper. The MRE material is used as a constrained damping layer between two elastic skins in order to investigate its effects on the aeroelastic stability of a blade cascade. To formulate the structural dynamic of the blades, torsional theory of rectangular laminated plates is used and the unsteady Whitehead's aerodynamic theory is employed to model the aerodynamic loadings. Assumed modes method and the Lagrange's equations are used to derive the governing equations of motion of the coupled aeroelastic system.... 

    Magnetic field effect on free vibration of smart rotary functionally graded nano/microplates: a comparative study on modified couple stress theory and nonlocal elasticity theory

    , Article Journal of Intelligent Material Systems and Structures ; Volume 29, Issue 11 , 2018 , Pages 2492-2507 ; 1045389X (ISSN) Shojaeefard, M. H ; Saeidi Googarchin, H ; Mahinzare, M ; Eftekhari, S. A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    In this article, free vibration behavior of a rotating nano/microcircular plate constructed from functionally graded magneto-elastic material is simulated with the first-order shear deformation theory. For the sake of comparison, the nonlocal elasticity theory and the modified couple stress theory are employed to implement the small size effect in the natural frequencies behavior of the nano/microcircular plate. The governing equations of motion for functionally graded magneto-elastic material nano/microcircular plates are derived based on Hamilton’s principle; comparing the obtained results with those in the literature, they are in a good agreement. Finally, the governing equations are... 

    Torsional vibration analysis of a rotating tapered sandwich beam with magnetorheological elastomer core

    , Article Journal of Intelligent Material Systems and Structures ; Volume 29, Issue 11 , 2018 , Pages 2406-2423 ; 1045389X (ISSN) Bornassi, S ; Navazi, H. M ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    In this study, the torsional vibration analysis of a rotating tapered sandwich beam with a magnetorheological elastomer core has been investigated. The magnetorheological elastomer material is used as a constrained damping layer embedded between two elastic constraining skins in order to improve the vibrational behavior of the sandwich beam. The three layers of the sandwich beam have rectangular cross-sections with symmetric arrangement. The problem formulation is set up based on the torsional theory of rectangular laminated plates. The assumed modes method and the Lagrange equations are used to derive the governing equations of motion of the system. The validity of the presented formulation...