Loading...
Search for: mechanical-model
0.01 seconds
Total 83 records

    3D Modeling of damage growth and crack initiation using adaptive finite element technique

    , Article Scientia Iranica ; Volume 17, Issue 5 A , 2010 , Pages 372-386 ; 10263098 (ISSN) Moslemi, H ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In this paper, the continuum damage mechanics model originally proposed by Lemaitre (Journal of Engineering Materials and Technology. 1985; 107: 83-89) is presented through an adaptive finite element method for three-dimensional ductile materials. The macro-crack initiation-propagation criterion is used based on the distribution of damage variable in the continuum damage model. The microcrack closure effect is incorporated to simulate the damage evolution more realistic. The Zienkiewicz-Zhu posteriori error estimator is employed in conjunction with a weighted Superconvergence Patch Recovery (SPR) technique at each patch to improve the accuracy of error estimation and data transfer process.... 

    3D modeling of damage growth and ductile crack propagation using adaptive FEM technique

    , Article Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI ; 2011 , Pages 996-1007 ; 9788489925731 (ISBN) Moslemi, H ; Khoei, A.R ; Sharif University of Technology
    Abstract
    In this paper, the continuum damage mechanics model originally proposed by Lemaitre [1] is presented through an adaptive finite element method for three-dimensional ductile materials. The macro-crack initiation-propagation criterion is used based on the distribution of damage variable in the continuum damage model. The micro-crack closure effect is incorporated to simulate the damage evolution more realistic. The Zienkiewicz-Zhu posteriori error estimator is employed in conjunction with a weighted superconvergence patch recovery (SPR) technique at each patch to improve the accuracy of error estimation and data transfer process. Finally, the robustness and accuracy of proposed computational... 

    A comprehensive evaluation of spine kinematics, kinetics, and trunk muscle activities during fatigue-induced repetitive lifting

    , Article Human Factors ; Volume 64, Issue 6 , 2022 , Pages 997-1012 ; 00187208 (ISSN) Kazemi, Z ; Mazloumi, A ; Arjmand, N ; Keihani, A ; Karimi, Z ; Ghasemi, M. S ; Kordi, R ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    Objective: Spine kinematics, kinetics, and trunk muscle activities were evaluated during different stages of a fatigue-induced symmetric lifting task over time. Background: Due to neuromuscular adaptations, postural behaviors of workers during lifting tasks are affected by fatigue. Comprehensive aspects of these adaptations remain to be investigated. Method: Eighteen volunteers repeatedly lifted a box until perceived exhaustion. Body center of mass (CoM), trunk and box kinematics, and feet center of pressure (CoP) were estimated by a motion capture system and force-plate. Electromyographic (EMG) signals of trunk/abdominal muscles were assessed using linear and nonlinear approaches. The L5-S1... 

    A mechanical model for morphological response of endothelial cells under combined wall shear stress and cyclic stretch loadings

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 15, Issue 5 , 2016 , Pages 1229-1243 ; 16177959 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag 
    Abstract
    The shape and morphology of endothelial cells (ECs) lining the blood vessels are a good indicator for atheroprone and atheroprotected sites. ECs of blood vessels experience both wall shear stress (WSS) and cyclic stretch (CS). These mechanical stimuli influence the shape and morphology of ECs. A few models have been proposed for predicting the morphology of ECs under WSS or CS. In the present study, a mathematical cell population model is developed to simulate the morphology of ECs under combined WSS and CS conditions. The model considers the cytoskeletal filaments, cell–cell interactions, and cell–extracellular matrix interactions. In addition, the reorientation and polymerization of... 

    A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk muscle forces

    , Article Journal of Biomechanics ; Volume 70 , March , 2018 , Pages 82-87 ; 00219290 (ISSN) Shojaei, I ; Arjmand, N ; Meakin, J ; Bazrgari, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set of TMFs, the segmental... 

    A multi-objective robust optimization model for logistics planning in the earthquake response phase

    , Article Transportation Research Part E: Logistics and Transportation Review ; Volume 49, Issue 1 , 2013 , Pages 217-249 ; 13665545 (ISSN) Najafi, M ; Eshghi, K ; Dullaert, W ; Sharif University of Technology
    2013
    Abstract
    Usually, resources are short in supply when earthquakes occur. In such emergency situations, disaster relief organizations must use these scarce resources efficiently to achieve the best possible emergency relief. This paper therefore proposes a multi-objective, multi-mode, multi-commodity, and multi-period stochastic model to manage the logistics of both commodities and injured people in the earthquake response. Also, a robust approach is developed and used to make sure that the distribution plan performs well under the various situations that can follow an earthquake. Afterwards, it proposes a solution methodology according to hierarchical objective functions and uses it to illustrate the... 

    An analytical solution to the elastic-plastic behavior of metal matrix composites under tensile loading

    , Article 29th Congress of the International Council of the Aeronautical Sciences, ICAS 2014 ; 2014 Khosoussi, S ; Mondali, M ; Abedian, A ; Sharif University of Technology
    Abstract
    An analytical approach is proposed for studying the elastic-plastic behavior of short fiber reinforced metal matrix composites under tensile loading. In the proposed method, a micromechanical approach is employed, considering an axi-symmetric unit cell including one fiber and the surrounding matrix. First, the governing equations and the boundary conditions are derived and the elastic solution is obtained based on some shear lag type methods. A plastic deformation is considered for the matrix under each small tensile loading step. Then, applying the successive elastic solutions method, all the plastic strain terms are obtained for the matrix. Thereafter, the elastic-plastic stress transfer... 

    A new approach to the elastic–plastic stress transfer analysis of metal matrix composites

    , Article Archive of Applied Mechanics ; Volume 85, Issue 11 , November , 2015 , Pages 1701-1717 ; 09391533 (ISSN) Khosoussi, S ; Mondali, M ; Abedian, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    An analytical approach is proposed for studying the elastic–plastic behavior of short-fiber-reinforced metal matrix composites under tensile loading. In the proposed research, a micromechanical approach is employed, considering an axisymmetric unit cell including one fiber and the surrounding matrix. First, the governing equations and the boundary conditions are derived and the elastic solution is obtained based on some shear-lag-type methods. Since under normal loading conditions and according to the fiber material characteristics, the metal matrix undergoes plastic deformation, while the fiber remains within the elastic region, a plastic deformation is considered for the matrix under each... 

    A new model of pressure propagation in human tissue in HIFU application

    , Article Acta Medica Mediterranea ; Volume 31, Issue 7 , 2015 , Pages 1501-1505 ; 03936384 (ISSN) Hajian, S. R ; Abbaspour Tehrani Fard, A ; Pouladian, M ; Hemmasi, G. R ; Sharif University of Technology
    A. CARBONE Editore  2015
    Abstract
    This project is a new pressure model for propagating pressure inside one or several tissues at the time of treatment with high intensity focus ultrasound (HIFU). Pressure's changes are converted to heat's changes in tissue and this is done oscillatory. When the treatment is done in deeper tissues, obtained heat can affect surficial tissues. This pressure effect also can enter surficial tissues. Amount of pressure and heat possible injury can be controlled and reduced through this mechanical modelling. In this model we have used three layers and pressure also is obtained within these three layers and is investigated averagely. Obtained tissue in this mood is kidney tissue and it is tried to... 

    An investigation into the deformation behaviour of AA6061-5% SiC p composite during and after hot extrusion process

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 225, Issue 1 , 2011 , Pages 22-31 ; 14644207 (ISSN) Akhgar, J. M ; Mirjalili, A ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    In this study, hot extrusion of AA6061-5% SiCp composite was studied to determine the composite thermo-mechanical behaviour during deformation and the mechanical properties of extruded composite. Hot compression tests were first carried out to obtain the flow stress behaviour of the composite at different temperatures and strain rates. Then a mathematical model was used to estimate the required energy as well as to predict temperature and strain distributions during the process. Finally, hot extrusion experiments were performed in order to verify the predictions and, also, tensile and hardness testing were conducted to evaluate mechanical properties of extruded material. Comparison between... 

    An investigation into the effect of strain ageing on mechanical properties of low-carbon steels after warm rolling

    , Article International Journal of Advanced Manufacturing Technology ; Volume 40, Issue 7-8 , 2009 , Pages 721-728 ; 02683768 (ISSN) Serajzadeh, S ; Sharif University of Technology
    2009
    Abstract
    In this study, the effect of strain ageing on mechanical properties of warm-rolled steel is investigated. Warm-rolling experiments together with mechanical testing are employed to investigate the effect of processing parameters on the ageing kinetics during and after warm rolling of a low-carbon steel. To do so, the occurrence of dynamic strain ageing is first determined by means of a two-dimensional thermo-mechanical model and then the effect of this phenomenon on the subsequent static strain ageing after warm rolling is studied employing mechanical testing. The results show that the occurrence of dynamic strain ageing during warm rolling may effectively alter the progress of the subsequent... 

    An optimization-based method for prediction of lumbar spine segmental kinematics from the measurements of thorax and pelvic kinematics

    , Article International Journal for Numerical Methods in Biomedical Engineering ; July , 2015 , Volume 31, Issue 12 ; 20407939 (ISSN) Shojaei, I ; Arjmand, N ; Bazrgari, B ; Sharif University of Technology
    Wiley-Blackwell  2015
    Abstract
    Given measurement difficulties, earlier modeling studies have often used some constant ratios to predict lumbar segmental kinematics from measurements of total lumbar kinematics. Recent imaging studies suggested distribution of lumbar kinematics across its vertebrae changes with trunk rotation, lumbar posture, and presence of load. An optimization-based method is presented and validated in this study to predict segmental kinematics from measured total lumbar kinematics. Specifically, a kinematics-driven biomechanical model of the spine is used in a heuristic optimization procedure to obtain a set of segmental kinematics that, when prescribed to the model, were associated with the minimum... 

    A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces

    , Article Medical Engineering and Physics ; Vol. 36, issue. 10 , 2014 , p. 1296-1304 Hajihosseinali, M ; Arjmand, N ; Shirazi-Adl, A ; Farahmand, F ; Ghiasi, M. S ; Sharif University of Technology
    Abstract
    An anatomically detailed eighteen-rotational-degrees-of-freedom model of the human spine using optimization constrained to equilibrium and stability requirements is developed and used to simulate several symmetric tasks in upright and flexed standing postures. Predictions of this stability and kinematics-driven (S. +. KD) model for trunk muscle forces and spine compressive/shear loads are compared to those of our existing kinematics-driven (KD) model where both translational and rotational degrees-of-freedom are included but redundancy is resolved using equilibrium conditions alone. Unlike the KD model, the S. +. KD model predicted abdominal co-contractions that, in agreement with... 

    A novel stability-based EMG-assisted optimization method for the spine

    , Article Medical Engineering and Physics ; Volume 58 , 2018 , Pages 13-22 ; 13504533 (ISSN) Samadi, S ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Traditional electromyography-assisted optimization (TEMG) models are commonly employed to compute trunk muscle forces and spinal loads for the design of clinical/treatment and ergonomics/prevention programs. These models calculate muscle forces solely based on moment equilibrium requirements at spinal joints. Due to simplifications/assumptions in the measurement/processing of surface EMG activities and in the presumed muscle EMG-force relationship, these models fail to satisfy stability requirements. Hence, the present study aimed to develop a novel stability-based EMG-assisted optimization (SEMG) method applied to a musculoskeletal spine model in which trunk muscle forces were estimated by... 

    Application of a kinematics-driven approach in human spine biomechanics during an isometric lift

    , Article Scientia Iranica ; Volume 15, Issue 5 , 2008 , Pages 596-612 ; 10263098 (ISSN) Arjmand, N ; Shirazi-Adl, A ; Bazrgari, B ; Parnianpour, M ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    Effective prevention and treatment management of spinal disorders can only be based on accurate estimation of muscle forces and spinal loads during various activities such as lifting. The infeasibility of experimental methods to measure muscle and spinal loads has prompted the use of biomechanical modeling techniques. A major shortcoming in many previous and current models is the consideration of equilibrium conditions only at a single cross section, rather than along the entire length of the spine, when attempting to compute muscle forces and spinal loads. The assumption of extensor global muscles with straight rather than curved paths and of the spinal segments as joints with no... 

    Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models

    , Article Journal of Biomechanics ; Volume 49, Issue 13 , Volume 49, Issue 13 , 2016 , Pages 2946-2952 ; 00219290 (ISSN) Gholipour, A ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Spinal posture is a crucial input in biomechanical models and an essential factor in ergonomics investigations to evaluate risk of low back injury. In vivo measurement of spinal posture through the common motion capture techniques is limited to equipped laboratories and thus impractical for workplace applications. Posture prediction models are therefore considered indispensable tools. This study aims to investigate the capability of artificial neural networks (ANNs) in predicting the three-dimensional posture of the spine (S1, T12 and T1 orientations) in various activities. Two ANNs were trained and tested using measurements from spinal postures of 40 male subjects by an inertial tracking... 

    Assessing the role of Ca2+ in skeletal muscle fatigue using a multi-scale continuum model

    , Article Journal of Theoretical Biology ; Volume 461 , 2019 , Pages 76-83 ; 00225193 (ISSN) Karami, M ; Calvo, B ; Zohoor, H ; Firoozbakhsh, K ; Grasa, J ; Sharif University of Technology
    Academic Press  2019
    Abstract
    The Calcium ion Ca2+ plays a critical role as an initiator and preserving agent of the cross-bridge cycle in the force generation of skeletal muscle. A new multi-scale chemo-mechanical model is presented in order to analyze the role of Ca2+ in muscle fatigue and to predict fatigue behavior. To this end, a cross-bridge kinematic model was incorporated in a continuum based mechanical model, considering a thermodynamic compatible framework. The contractile velocity and the generated active force were directly related to the force-bearing states that were considered for the cross-bridge cycle. In order to determine the values of the model parameters, the output results of an isometric simulation... 

    A system dynamics approach to analyze water resources systems

    , Article 31st IAHR Congress 2005: Water Engineering for the Future, Choices and Challenges, 11 September 2005 through 16 September 2005 ; 2005 , Pages 4991-5000 ; 8987898245 (ISBN); 9788987898247 (ISBN) Bagheri, A ; Baradarannia, M.R ; Sarang, A ; Hjorth, P ; Byong-Ho J ; Sang I.L ; Won S.I ; Gye-Woon C ; Sharif University of Technology
    Korea Water Resources Association  2005
    Abstract
    Several mathematical modeling approaches are used to model water resources systems such as deterministic and non-deterministic, lumped and distributed, steady and dynamic, simulation and optimization approaches. All these modeling paradigms - categorized as open systems - assume that the input conditions to the system will not change during their operation. What is happening in the real world is somewhat different. Due to their dynamic behaviors, real world events exert feedbacks from their outputs to their inputs which may cause the input conditions vary with time. This is the main focus of the system dynamics theory which has been introduced in this paper to be applied in water resources... 

    A three-dimensional micromechanical model of brain white matter with histology-informed probabilistic distribution of axonal fibers

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 88 , 2018 , Pages 288-295 ; 17516161 (ISSN) Yousefsani, S. A ; Farahmand, F ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper presents a three-dimensional micromechanical model of brain white matter tissue as a transversely isotropic soft composite described by the generalized Ogden hyperelastic model. The embedded element technique, with corrected stiffness redundancy in large deformations, was used for the embedment of a histology-informed probabilistic distribution of the axonal fibers in the extracellular matrix. The model was linked to a multi-objective, multi-parametric optimization algorithm, using the response surface methodology, for characterization of material properties of the axonal fibers and extracellular matrix in an inverse finite element analysis. The optimum hyperelastic... 

    A three-dimensional statistical volume element for histology informed micromechanical modeling of brain white matter

    , Article Annals of Biomedical Engineering ; Volume 48, Issue 4 , 2020 , Pages 1337-1353 Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Springer  2020
    Abstract
    This study presents a novel statistical volume element (SVE) for micromechanical modeling of the white matter structures, with histology-informed randomized distribution of axonal tracts within the extracellular matrix. The model was constructed based on the probability distribution functions obtained from the results of diffusion tensor imaging as well as the histological observations of scanning electron micrograph, at two structures of white matter susceptible to traumatic brain injury, i.e. corpus callosum and corona radiata. A simplistic representative volume element (RVE) with symmetrical arrangement of fully alligned axonal fibers was also created as a reference for comparison. A...