Loading...
Search for: medical-nanotechnology
0.007 seconds
Total 35 records

    The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating

    , Article Journal of Nanoparticle Research ; Volume 17, Issue 4 , April , 2015 ; 13880764 (ISSN) Pourjavadi, A ; Tehrani, Z. M ; Mahmoudi, N ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    In the present work, biocompatible superparamagnetic iron oxide nanoparticles coated by mesoporous silica were used as drug nanocarriers for doxorubicin (Dox; an anticancer drug) delivery. In biological media, the interaction of protein corona layer with the surface of nanoparticles is inevitable. For this reason, we studied the effect of protein corona on drug release from magnetic mesoporous silica nanoparticles (MMSNs) in human plasma medium. Besides, we used hydrophilic and biocompatible polymer, polyethylene glycol (PEG), to decrease protein corona effects. The results showed the increased Dox release from PEGylated MMSNs compared with bare MMSNs. This result indicated that the coating... 

    Synthesis of pseudopolyrotaxanes-coated superparamagnetic Iron oxide nanoparticles as new MRI contrast agent

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 103 , March , 2013 , Pages 652-657 ; 09277765 (ISSN) Hosseini, F ; Panahifar, A ; Adeli, M ; Amiri, H ; Lascialfari, A ; Orsini, F ; Doschak, M. R ; Mahmoudi, M ; Sharif University of Technology
    2013
    Abstract
    Superparamagnetic Iron Oxide Nanoparticles (SPIONs) were synthesized and coated with pseudopolyrotaxanes (PPRs) and proposed as a novel hybrid nanostructure for medical imaging and drug delivery. PPRs were prepared by addition of α-cyclodextrin rings to functionalized polyethylene glycol (PEG) chain with hydrophobic triazine end-groups. Non-covalent interactions between SPIONs and PPRs led to the assembly of SPIONs@PRs hybrid nanomaterials. Measurements of the 1H Nuclear Magnetic Resonance (NMR) relaxation times T1 and T2 allowed us to determine the NMR dispersion profiles. Comparison between our SPIONs@PRs hybrid nano-compound and the commercial SPION compound, Endorem®, showed a higher... 

    Protein-nanoparticle interactions: Opportunities and challenges

    , Article Chemical Reviews ; Volume 111, Issue 9 , June , 2011 , Pages 5610-5637 ; 00092665 (ISSN) Mahmoudi, M ; Lynch, I ; Ejtehadi, M. R ; Monopoli, M. P ; Bombelli, F. B ; Laurent, S ; Sharif University of Technology
    2011
    Abstract
    The significant role of protein nanoparticle interactions in nanomedicine and nanotoxicity is emerging recently through the identification of the nanoparticles (NP) protein (biomolecule) corona. The dynamic layer of proteins and/or other biomolecules adsorbed to the nanoparticle surface determines how a NP interacts with living systems and thereby modifies the cellular responses to the NP. Ehrenberg and co-workers used cultured endothelium cells as a model for vascular transport of polystyrene NP with various functional groups, which showed that the capacity of the various NP surfaces to adsorb proteins was indicative of their tendency to associate with cells. The quantification of the... 

    Pressure-engineered electrophoretic deposition for gentamicin loading within osteoblast-specific cellulose nanofiber scaffolds

    , Article Materials Chemistry and Physics ; Volume 272 , 2021 ; 02540584 (ISSN) Rahighi, R ; Panahi, M ; Akhavan, O ; Mansoorianfar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Multi-component nanocomposite thin films (composed of cellulose nanofiber (CNF), alginate, bioglass nanoparticles (BG NPs) and gentamicin) were prepared by using cathodic electrophoretic deposition (EPD) under different isostatic pressures of 10−2 mbar (LP), atmospheric (AP), and 5 bar (HP). According to thermal gravity analysis, larger amounts of CNF and alginate could be deposited on the surface at the AP condition in comparison with the LP and HP conditions. On the other hand, higher amounts of the BG NPs could be deposited at the LP condition as compared to the other conditions. The drug (gentamicin) loading/releasing of the samples prepared at the HP condition was found to be higher... 

    Polyrotaxane capped quantum dots as new candidates for cancer diagnosis and therapy

    , Article Journal of Nanostructured Polymers and Nanocomposites ; Volume 7, Issue 1 , 2011 , Pages 18-31 ; 17904439 (ISSN) Sarabi, R. S ; Sadeghi, E ; Hosseinkhani, H ; Mahmoudi, M ; Kalantari, M ; Adeli, M ; Sharif University of Technology
    2011
    Abstract
    Molecular self-assembly of cadmium selenide quantum dots-end-capped polyrotaxane hybrid nanostructures (PRCdSe QDs) was led to a new type of core-shell hybrid nanomaterials consisting of cadmium selenide quantum dot (CdSe QDs) core and polyrotaxane shell (PR@QDs). Structure of PR@QDs was characterized using various techniques. It has been observed that the size of PR@QDs was between 20-25 nm in which diameter of core and thickness of shell were between 15-20 and 2-3 nm, respectively. Short-term in vitro cytotoxicity tests, using MTT (3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, were conducted on mouse tissue connective fibroblast adhesive cell line (L929) in order to... 

    Polymer-functionalized carbon nanotubes in cancer therapy: A review

    , Article Iranian Polymer Journal (English Edition) ; Vol. 23, issue. 5 , May , 2014 , p. 387-403 Eskandari, M ; Hosseini, S. H ; Adeli, M ; Pourjavadi, A ; Sharif University of Technology
    Abstract
    The increasing importance of nanotechnology in the field of biomedical applications has encouraged the development of new nanomaterials endowed with multiple functions. Novel nanoscale drug delivery systems with diagnostic, imaging and therapeutic properties hold many promises for the treatment of different types of diseases, including cancer, infection and neurodegenerative syndromes. Carbon nanotubes (CNTs) are both low-dimensional sp2 carbon nanomaterials exhibiting many unique physical and chemical properties that are interesting in a wide range of areas including nanomedicine. Since 2004, CNTs have been extensively explored as drug delivery carriers for the intracellular transport of... 

    Poly(citric acid)-block-poly(ethylene glycol) copolymers-new biocompatible hybrid materials for nanomedicine

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 6, Issue 4 , Aug , 2010 , Pages 556-562 ; 15499634 (ISSN) Tavakoli Naeini, A ; Adeli, M ; Vossoughi, M ; Sharif University of Technology
    Abstract
    Linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks were synthesized through polycondensation. The molecular self-assembly of synthesized PCA-PEG-PCA copolymers in water led to formation of nanoparticles and fibers in different sizes and shapes depending on the time and size of PCA blocks. Ten days after dissolving PCA-PEG-PCA copolymers in water, the size of fibers had reached several millimeters. Mixing a water solution of fluorescein as a small guest molecule and PCA-PEG-PCA copolymers led to the encapsulation of fluorescein by products of molecular self-assembly. To investigate their potential... 

    Photo-destruction of cancer cells by NIR irradiation and graphene nano-sheets

    , Article Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011, 13 June 2011 through 16 June 2011, Boston, MA ; Volume 3 , 2011 , Pages 236-239 ; 9781439871386 (ISBN) Abdolahad, M ; Mohajerzadeh, S ; Janmaleki, M ; Akhavan, O ; Azimi, S ; Clean Technology and Sustainable Industries Organization (CTSI); European Patent Office; Greenberg Traurig; Innovation and Materials Science Institute; Jackson Walker L.L.P ; Sharif University of Technology
    2011
    Abstract
    The photo-thermal therapy using nano-materials has attracted great attention as an efficient strategy for the next generation of cancer treatments. Recently, photo-thermal therapy based on nano-materials that can be activated by a skin-penetrating NIR (Near Infra Red) irradiation has been suggested as a noninvasive, harmless, and highly efficient therapeutic technique. Graphene nano-layers synthesized by a bio-compatible method, with reduced toxicity, will be a suitable candidate for the photo-thermal therapeutic agent. A significant amount of heat is generated upon excitation with near-infrared light (NIR, 700-1100nm) which is transparent to biological species including skins. In this... 

    Particles in coronary circulation: A review on modelling for drug carrier design

    , Article Materials and Design ; Volume 216 , 2022 ; 02641275 (ISSN) Forouzandehmehr, M ; Ghoytasi, I ; Shamloo, A ; Ghosi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Atherosclerotic plaques and thrombosis are chronic inflammatory complications and the main manifestations of cardiovascular diseases (CVD), the leading cause of death globally. Achieving non/minimal-invasive therapeutic means for these implications in the coronary network is vital and has become an interdisciplinary concern. Accordingly, smart drug delivery systems, specifically based on micro- and nanoparticles, as a promising method to offer non/minimal-invasive therapeutic mechanisms are under active research. Notably, computational models enable us to study, design, and predict treatment strategies based on smart drug delivery systems with less time and cost compared with conventional... 

    Paclitaxel/β-CD-g-PG inclusion complex: An insight into complexation thermodynamics and guest solubility

    , Article Journal of Molecular Liquids ; Volume 208 , August , 2015 , Pages 145-150 ; 01677322 (ISSN) Zarrabi, A ; Vossoughi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Paclitaxel as one of the most effective anticancer drugs has low aqueous solubility. This inevitably reveals its commercial formulation in Cremophor EL®/ethanol mixture. However, this formulation leads to several severe side effects such as hypersensitivity reactions, neurotoxicity and nephrotoxicity. Inclusion complexation has been introduced as a practical approach in increasing paclitaxel aqueous solubility. To this end, a hybrid nanocarrier system based on hyperbranched polyglycerol and β-cyclodextrin is designed with key components uniquely structured at nanoscale and evaluated according to medical requirements. Paclitaxel is included in the hydrophobic cavity of cyclodextrin as guest... 

    Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing

    , Article Advanced Drug Delivery Reviews ; Volume 123 , 2018 , Pages 33-64 ; 0169409X (ISSN) Mofazzal Jahromi, M. A ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Sahandi Zangabad, K ; Ghamarypour, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally... 

    Multifunctional core-shell nanoplatforms (gold@graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 14, Issue 6 , 2018 , Pages 1891-1903 ; 15499634 (ISSN) Assali, A ; Akhavan, O ; Adeli, M ; Razzazan, S ; Dinarvand, R ; Zanganeh, S ; Soleimani, M ; Dinarvand, M ; Atyabi, F ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Recent insights into the nanomedicine have revealed that nanoplatforms enhance the efficacy of carrier in therapeutic applications. Here, multifunctional nanoplatforms were utilized in miRNA-101 delivery and NIR thermal therapy to induce apoptosis in breast cancer cells. Au nanorods (NRs) or nanospheres (NSs) covered with graphene oxide (GO) were prepared and functionalized with polyethylene glycol as a stabilizer and poly-L-arginine (P-L-Arg) as a targeting agent. In nanoplatforms, coupling Au@GO prepared stable structures with higher NIR reactivity. P-L-Arg substantially enhanced the cellular uptake and gene retardation of stuffs coated by them. However, rod-shape nanoplatforms indicated... 

    Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future?

    , Article Ceramics International ; 2020 Sarraf, M ; Nasiri Tabrizi, B ; Yeong, C. H ; Madaah Hosseini, H. R ; Saber Samandari, S ; Basirun, W. J ; Tsuzuki, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide... 

    Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future?

    , Article Ceramics International ; Volume 47, Issue 3 , 2021 , Pages 2917-2948 ; 02728842 (ISSN) Sarraf, M ; Nasiri Tabrizi, B ; Yeong, C. H ; Madaah Hosseini, H. R ; Saber-Samandari, S ; Basirun, W. J ; Tsuzuki, T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide... 

    Metal–organic frameworks (MOFs) for cancer therapy

    , Article Materials ; Volume 14, Issue 23 , 2021 ; 19961944 (ISSN) Saeb, M. R ; Rabiee, N ; Mozafari, M ; Verpoort, F ; Voskressensky, L. G ; Luque, R ; Sharif University of Technology
    MDPI  2021
    Abstract
    MOFs exhibit inherent extraordinary features for diverse applications ranging from cataly-sis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via “post-synthetic modification” mainly by changing linkers (by altering the type, length, functionality, and charge of the linkers) or node components within the MOF framework. Additionally, efforts are aimed towards manipulating the size and morphology of crystallite domains in... 

    Membrane interactions control residue fluctuations of outer membrane porins

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 81, Issue 5 , May , 2010 ; 15393755 (ISSN) Besya, A. B ; Mobasheri, H ; Ejtehadi, M. R ; Sharif University of Technology
    2010
    Abstract
    Bacterial outer membrane porins (Omp) that have robust β -barrel structures, show potential applications for nanomedicine devices in synthetic membranes and single molecule detection biosensors. Here, we explore the conformational dynamics of a set of 22 outer membrane porins, classified into five major groups: general porins, specific porins, transport Omps, poreless Omps and composed pores. Normal mode analysis, based on mechanical vibration theory and elastic network model, is performed to study the fluctuations of residues of aforementioned porins around their equilibrium positions. We find that a simple modification in this model considering weak interaction between protein and... 

    Investigation of the interactions between Melittin and the PLGA and PLA polymers: Molecular dynamic simulation and binding free energy calculation

    , Article Materials Research Express ; Volume 6, Issue 5 , 2019 ; 20531591 (ISSN) Asadzadeh, H ; Moosavi, A ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Nanobiotechnology is the application of nanotechnology in nanomedicine. Recently, the use of antimicrobial peptides as a substitute for antibiotics and anticancer drugs has attracted increasing attention. Therefore, the study of the structural behavior of these peptides such as Melittin and their interactions with biocompatible and biodegradable polymers is important. This study was performed to evaluate the critical interactions in the formation of the Melittin-polymers complexes. The aim of the current study was to investigate molecular mechanisms of Melittin encapsulation in biopolymers by molecular dynamics (MD) simulation. The results indicated that the basic residues of Melittin could... 

    Investigation of the interactions between Melittin and the PLGA and PLA polymers: Molecular dynamic simulation and binding free energy calculation

    , Article Materials Research Express ; Volume 6, Issue 5 , 2019 ; 20531591 (ISSN) Asadzadeh, H ; Moosavi, A ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Nanobiotechnology is the application of nanotechnology in nanomedicine. Recently, the use of antimicrobial peptides as a substitute for antibiotics and anticancer drugs has attracted increasing attention. Therefore, the study of the structural behavior of these peptides such as Melittin and their interactions with biocompatible and biodegradable polymers is important. This study was performed to evaluate the critical interactions in the formation of the Melittin-polymers complexes. The aim of the current study was to investigate molecular mechanisms of Melittin encapsulation in biopolymers by molecular dynamics (MD) simulation. The results indicated that the basic residues of Melittin could... 

    High-gravity-assisted green synthesis of palladium nanoparticles: the flowering of nanomedicine

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 30 , November , 2020 Kiani, M ; Rabiee, N ; Bagherzadeh, M ; Ghadiri, A. M ; Fatahi, Y ; Dinarvand, R ; Webster, T. J ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    This study investigated the synthesis of Pd nanoparticles (NPs) using a high-gravity technique mediated by Salvia hispanica leaf extracts. Biological assays confirmed their antibacterial activity against gram positive (S. aureus) and gram negative (E. coli) bacteria with significant antioxidant activity in comparison with the standards as well as low cellular toxicity on PC12 and HEK293 cell lines. To the best of our knowledge, this study can be considered as the first investigation of Pd-NPs synthesized by Salvia hispanica leaf extracts assisted by a high-gravity technique. In addition, the mentioned green synthesis procedure led to the formation of nanoparticles with considerable... 

    Green metal-organic frameworks (MOFs) for biomedical applications

    , Article Microporous and Mesoporous Materials ; Volume 335 , 2022 ; 13871811 (ISSN) Rabiee, N ; Atarod, M ; Tavakolizadeh, M ; Asgari, S ; Rezaei, M ; Akhavan, O ; Pourjavadi, A ; Jouyandeh, M ; Lima, E. C ; Hamed Mashhadzadeh, A ; Ehsani, A ; Ahmadi, S ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Metal-organic frameworks (MOFs), known as highly ordered crystalline hybrid structures, are the products of coordination polymerization of transition metals and organic ligands. MOFs are best known for their extensive specific surface area, hierarchically porous and tailorable 1D, 2D, or 3D micro-and nanostructure, and acceptable biocompatibility. Because of the multiplicity of metallic and organic units used in MOFs synthesis, tailor-made MOFs can be synthesized to be served as building blocks of advanced biological materials and systems. Recently, synthesis of green MOFs has received much more attention for nanobiomedicine usage. We review herein synthesis and biomedical application of...